
 1

Design Patterns notes.

General.
Patterns are classified by purpose and scope.
The purpose is defined as :

• creational
Creational patterns deal with the creation of objects and help to make a system independent of how
objects are created, composed and represented. They also enable flexibility in what gets created,
who creates it, how it gets created and when it gets created.

• structural
Structural patterns deal with how objects are arranged to form larger structures

• behavioural
Behavioural patterns deal with how objects interact, the ownership of responsibility and factoring
code in variant and non-variant components.

The scope is defined as :

• class - static relationships through class inheritance (white-box reuse)
• object - dynamic relationships through object composition (black-box reuse) or collaboration

Pattern summary.
There are 5 creational patterns, 7 structural patterns and 11 behavioural patterns :

 Purpose
 Creational Structural Behavioural
Scope Class Factory Method Adapter (class) Interpreter

Template Method
 Object Abstract Factory

Builder
Prototype
Singleton

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Pros/cons of using Design Patterns.
Pros.

• quality, flexibility and re-use
Design Patterns capture solutions to common computing problems and represent the time, effort and
experience gained from applying these solutions over numerous domains/iterations. Generally systems that
use Design Patterns are elegant, flexible and have more potential for reuse

• provide a common frame of reference for discussion of designs
• patterns can be combined to solve one or more common computing problems

• provide a common format for pattern specification

Intent, Motivation, Applicability, Structure, Participants, Collaborations, Consequences

Cons.
• complexity.

Design Patterns require a reasonable degree of study and can be difficult for some designers to grasp. Junior
designers/developers may not have encountered Design Patterns and have to learn them before they can be
productive on a project.

Design Patterns Notes 28/03/2002

 2

Creational Patterns Summary.
N.B. in the following pattern descriptions, the terms abstract class and interface are equivalent
Pattern Description Pros/Cons
Abstract Factory
“Provide an interface for
creating families of
related or dependent
objects without specifying
their concrete classes”

A “family” of abstract create methods
(each of which returns a different
AbstractProduct) are grouped in an
AbstractFactory interface.
ConcreteFactory implementations
implement the abstract create methods to
produce ConcreteProducts.

Pros.
• shields clients from concrete classes
• easy to switch product family at runtime

– just change concrete factory
• “keep it in the family” – enforces product

family grouping

Cons.
• adding a new product means changing

factory interface + all concrete factories
Builder
“Separate the
construction of a complex
object from it’s
representation so that the
same construction process
can create different
representations”

An appropriate ConcreteBuilder
(implements Builder) is constructed and
associated with a Director. The Director
traverses an object graph and passes each
object to the Builder. The Builder uses
each object to build-up a complex
Product over time. When the object
graph has been fully traversed, the final
Product can be retrieved from the Builder.

Pros.
• separates complex construction from

(re)presentation
• shields the Director from the algorithm

and internal structure used to build the
Product

• enables a consolidated Product to be built
up over time – e.g. the Product requires
info from multiple sources, info available
at different times

Factory Method
“Define an interface for
creating an object but let
subclasses decide which
class to instantiate.
Factory method lets a
class defer instantiation
to subclasses”

An abstract Creator class defines an
abstract create method (or provides a
default create method) which returns an
abstract Product. A ConcreteCreator
class implements the abstract create
method to return a ConcreteProduct.
This enables the Creator to defer Product
creation to a subclass.

N.B. Factory Method is often used in the
Abstract Factory pattern to implement the
create methods

Pros.
• shields clients from concrete classes
• if a framework uses the Factory Method

pattern, it enables third-party developers
to plug-in new Products

• the Creator create method can be coded
to return a default Product

Cons.
• coding a new Product means writing two

classes – one for the concrete Product
and one for the concrete Creator

• static – inheritance based
Prototype
“Specify the kinds of
objects to create using a
prototypical instance and
create new objects by
copying this prototype”

Objects implement the clone () method of
the Prototype interface by returning a
copy of self. A client maintains a registry
of Prototype instances. When a new
instance is required, the client invokes
clone ()

Pros.
• shields clients from concrete classes
• the object is the factory - i.e. Product and

Creator combined (saves coding a
Creator for every Product)

• pre-configured object instances – instead
of create/set member vars every time

Cons.
• every Prototype instance has to

implement clone () which may not be
easy – e.g. circular references, contained
elements don’t support copying, large
number of classes to be retrofitted, etc.

Singleton
“Ensure a class has only
one instance and provide
a global point of access to
it”

A Singleton is defined with a static
getInstance () method, a protected
constructor and any other required
instance methods. As the constructor is
protected, the only way to obtain an
instance is through the static getInstance
() method. This serves to control the
number of instances created/in use by
clients.

Pros.
• controls access to the instance(s)
• controls the number of instances
• more flexible than a static class - the

instance(s) constructed in getInstance ()
can be a subclass so method overrides are
allowed (can’t use method overrides with
a static class).

Design Patterns Notes 28/03/2002

 3

Structural Patterns Summary.

Pattern Description Pros/Cons
Adapter
“Convert the interface of
one class into another
interface clients expect.
Adapter lets classes work
together that couldn’t
otherwise because of
incompatible interfaces”

A concrete Adapter class implements
methods defined in a Target interface by
wrapping calls to methods in a concrete
Adaptee (and also provides equivalent
functionality for required Target methods
if they don’t exist in Adaptee).
A Class Adapter uses multiple inheritance
of Target and Adaptee. With an Object
Adapter, Adapter contains an Adaptee
and forwards requests.

Pros.
• enables interoperability – especially

useful when using one or more third-
party class libraries in your code

• highlights the Target “contract” – e.g. if
shipping reusable components, include a
default adapter for use by clients

• object adapter – a single Adapter can
adapt many Adaptees (including
subclasses)

• class adapter – automatically inherit
Adaptee methods; inherited methods can
be overridden

Cons.
• type adapted – to the outside world, the

Adaptee looks like an Adapter (can’t
pass to Adaptee methods unless a two-
way adapter is implemented)

• object adapter – need to write tedious
method mapping/delegation code

• class adapter – need to provide an
adapter for each subclass

• class adapter – multiple-inheritance of
potentially similar interfaces (risk of
method name collisions)

Bridge
“Decouple an abstraction
from its implementation
so that the two can vary
independently”

Abstraction (an abstract base class)
provides core functionality for it’s
subclasses by aggregating primitive
methods from an Implementor (an
abstract class/interface) into high-level
methods. ConcreteImplementor classes
provide specific implementations of the
primitive methods. This facilitates a
clean separation between elements that
are common (e.g. Window.draw ()) and
elements that are specific (e.g.
XWindow.draw ())

Pros.
• decouples abstraction from

implementation – clean separation
between common aspects and specific
differences

• extensible – abstraction and
implementation can evolve
independently

• shields clients from concrete classes – a
change in the implementation doesn’t
require the client to be updated

• implementation can be swapped at
runtime

Composite
“Compose objects into
tree structures to
represent part-whole
hierarchies. Composite
lets clients treat
individual objects and
compositions of objects
uniformly”

Component (an abstract base class) is
sub-classed into either a Leaf or a
Composite. A Composite contains one or
more Components – i.e. a Leaf or another
Composite. This enables a client to view
a single item or a group of items as one
type – a Component.

Pros.
• facilitates uniform view - clients are

shielded from details of whether a
Component is a Leaf or Composite

• easy to add new components –
everything referenced by Component

Cons.
• referring to either as Component makes it

too general – can’t control what
Components make up a Composite
without explicitly checking

Design Patterns Notes 28/03/2002

 4

Structural Patterns Summary (2).

Pattern Description Pros/Cons
Decorator
“Attach additional
responsibilities to an
object dynamically.
Decorators provide a
flexible alternative to sub-
classing for extending
functionality”

ConcreteDecorator (subclass of
Decorator) classes wrap
ConcreteComponent (subclass of
Component) classes to transparently
extend their functionality. This is
achieved by added functionality
before/after dispatching method calls to
the Component. Transparency is
achieved as the Decorator interface
matches the Component interface

Pros.
• more flexible than inheritance -

functionality can be extended on an
instance basis, at runtime, etc.

• promotes reuse – a Decorator can
enhance anything that implements
Component

• enables recursive composition – can
construct a chain of Decorators

Cons.
• too transparent – a Decorator looks just

like the original Component
• difficult to conceptualise – lots of fine-

grained Decorators connected in lots of
different ways

Facade
“Provided a unified
interface to a set of
interfaces in a sub-system.
Facade defines a higher-
level interface that makes
the sub-system easier to
use”

A Facade provides a simplified view of a
complex object model by aggregating
methods from multiple subsystem classes
into a few high-level methods.
Communication is one-way – the Facade
knows about the subsystem classes but
the subsystem don’t have any knowledge
of the Facade.

Pros.
• shields the client from the complexity of

the subsystem
• decouples the client from the subsystem

– relationship management is
externalised to the Facade

• performance - batch several method calls
into one

• control – provides a central point to
exercise control

Flyweight
“Use sharing to support
large numbers of fine-
grained objects
efficiently”

A pool of common objects (Flyweights)
are shared by splitting the object state into
static (intrinsic) and instance specific
(extrinsic) components. When invoking
methods on the Flyweight, the client must
pass the extrinsic state in the method.
The pool is managed by a
FlyweightFactory which ensures that
objects are added to the pool on first
request and retrieved from the pool
thereafter.

Pros.
• support a large number of clients using a

relatively small pool

Cons.
• overhead – have to pass in extrinsic state

each time

Proxy
“Provide a surrogate or
placeholder for another
object to control access to
it”

A common Subject interface is defined
and implemented by a RealSubject class
and a Proxy class. The Proxy acts as a
middle-man between the client and the
RealSubject. As far as the client is
concerned, the Proxy looks identical to
the RealSubject (it’s transparent).

Pros.
• provides a layer-of-indirection between

the client and the RealSubject which can
be used to implement a variety of useful
features (load-on-demand, location
transparency, access control, reference
counting)

Cons.
• too transparent – as the Proxy is

transparent, the client isn’t aware of how
the Proxy should be used (e.g. with
location transparency, every method call
is a remote call)

Design Patterns Notes 28/03/2002

 5

Behavioural Patterns Summary.

Pattern Description Pros/Cons
Chain of Responsibility
“Avoid coupling the
sender of a request to its
receiver by giving more
than one object a chance
to handle the request.
Chain the receiving
objects and pass the
request along the chain
until an object handles
it.”

Decouples the sender of a request from
the “ultimate” receiver. The request is
passed along a chain of potential
Handlers until one of them deals with it.
If a handler doesn’t wish to deal with the
request, it passes the request to it’s
successor

Pros.
• reduced coupling
• flexible responsibility – handling the

request is optional

Cons.
• the request may get handler by the

default handler which may not know
what to do with it

Command
“Encapsulate a request as
an object, thereby letting
you parameterize clients
with different requests,
queue or log requests,
and support undoable
operations.”

The purpose of the Command pattern is to
decouple an event generator (the Invoker)
from the event handler (the Receiver). A
ConcreteCommand class (sub-classed
from Command) defines an execute ()
method which calls the appropriate
method on the Receiver (the action
method). The client is responsible for
associating the Receiver with the
Command and then the Command with
an Invoker.

N.B. 1:1:1 mapping between Invoker,
Command and Receiver.

Pros.
• decouples Invoker from Receiver –

makes Receiver more re-usable as it
doesn’t manage the relationship with the
Invoker

• Command encapsulate a request –
requests can be stored so they can be
undone, processed at a later time, etc.

• extensible – easy to add new Commands
• macros – commands can be grouped into

macros so that multiple commands can
be run at once

• dynamic – e.g. different Commands,
multiple Invokers, decide at runtime, etc.

Cons.
• can’t centralise related action methods in

one Command class - only one method is
used (execute ())

Interpreter
“Given a language, define
a representation for its
grammar along with an
interpreter that use the
representation to interpret
sentences in the
language.”

Don’t care

Design Patterns Notes 28/03/2002

 6

Behavioural Patterns Summary (2).

Pattern Description Pros/Cons
Iterator
“Provide a way to access
the elements of an
aggregate object
sequentially without
exposing its underlying
representation.”

A common OO requirement is traversal
of an aggregate structure. The
implementation of the traversal is
factored out of the Aggregate class into
an Iterator. The Factory Method pattern
is used by a ConcreteAggregate to create
a ConcreteIterator. The ConcreteIterator
keeps track of the “current” position. The
same interface is used to iterate regardless
of the underlying aggregate structure.

Pros.
• shields the client from the aggregrate’s

internal representation
• the aggregate can be iterated in many

different ways (i.e. multiple
ConcreteIterators)

• more than one iterator can be active – the
iterator stores the current state so each is
self contained

• simplifies the ConcreteAggregate code –
iterator is in a separate class

Cons.
• uses Abstract Factory so have to define a

ConcreteAggregate in addition to the
ConcreteIterator

• if the underlying aggregate is updated
while using an Iterator, the operation of
the Iterator may be undefined.

Mediator
“Define an object that
encapsulates how a set of
objects interact.
Mediator promotes loose
coupling by keeping
objects from referring to
each other explicitly, and
it lets you vary their
interaction
independently.”

A collection of related classes called
Colleagues (sub-classed as
ConcreteColleague) need to inform each
other when an event occurs. Rather than
couple every colleague to every one of
it’s peers, each Colleague publishes the
event to a Mediator (sub-classed as
ConcreteMediator). The Mediator then
republishes the event to the other
Colleagues. Communication is therefore
two-way – the Mediator knows about the
Colleagues and vice-versa.

Pros.
• promotes a loose coupling between the

Colleagues – instead of a Many:Many
publish, it’s a Many:1 (Colleagues to
Mediator) followed by a 1:Many
(Mediator to Colleagues)

• promotes reuse – Colleagues aren’t
bogged down with relationship
management code so can be reused in
other circumstances

• centralizes relationship management in
the Mediator

Cons.
• the Mediator can become very complex

and difficult to maintain
Memento
“Without violating
encapsulation, capture and
externalize an object’s
internal state so that the
object can be restored to this
state later.”

Uses an Originator (managed a contained
Memento obj), Memento (snapshot of
originator state, preserves encapsulation)
and a Caretaker (manages Memento
objects)

Pros.
• preserves encapsulation
• state can be stored and reloaded later on

Observer
“Define a one-to-many
dependency between
objects so that when one
object changes state, all
its dependents are notified
and updated
automatically.”

One or more Observers (sub-classed as
ConcreteObserver) can be registered with
a Subject (sub-classed as
ConcreteSubject). When the state of the
Subject changes, all registered Observers
are notified. Two notification models are
available : push (the state change is sent
with the notification) and pull (the
notification is the event only, if the
Observer wants to see the state change it
requests it from the Subject)

Pros.
• abstract coupling of Subject and

Observer – Subject doesn’t care what an
Observer does with the event, just
notifies it

• supports broadcast – in theory, any
number of Observers can be supported
(doesn’t work in practice)

Cons.
• the client to the Subject works in

isolation – isn’t aware that setting the
state could cause a cascade of event
notifications

Design Patterns Notes 28/03/2002

 7

Behavioural Patterns Summary (3).

Pattern Description Pros/Cons
State
“Allow an object to alter its
behaviour when its internal
state changes. The object
will appear to change its
class.”

A common State class is subclassed for
all possible states. Each subclass restricts
the operation of common methods based
on it’s state. Current state is stored in a
Context; next state is return by the current
State subclass when handle () is called

Pros.
• collects actions + transitions into state

specific classes
Cons.
• doesn’t scale – i.e. if large num of

states/actions
Strategy
“Define a family of
algorithms, encapsulate
each one and make them
interchangeable. Strategy
lets the algorithm vary
independently from clients
that use it.”

Algorithms are defined as Strategy
classes. Related algorithms are grouped
into a family of Strategy classes. A
StrategyContext class contains all
required info for the algorithm defined in
the Strategy and the two classes work in
conjunction to execute the algorithm.

Pros.
• a family of Strategy classes is available –

pick the most suitable or as directed by
an external decision making process

• simplified/cleaner code – instead of lots
of “if” statements or subclasses each
implementing an algorithm, one
“dispatcher” class can provide all
relevant Strategy’s on request

Cons.
• clients must know the classes available in

the family - clients instantiate Strategy
instances when the StrategyContext is
created

Template Method
“Define the skeleton of an
algorithm in an operation,
deferring some steps to
subclasses. Template
Method lets subclasses
redefine certain steps of
an algorithm without
changes the algorithms
structure”

Capture the invariant behaviour of an
algorithm in an abstract base class using
high-level methods. Define the variant
behaviour as abstract primitive methods
so that concrete sub-classes can provide
implementations. The high-level methods
are defined using a combination of
primitive methods and methods defined in
the abstract base class.

N.B. basically a behavioural version of
the Factory Method

Pros.
• shields the client from the details of the

variant behaviour
• quality & productivity – only the variant

behaviour needs to be implemented

Visitor
“Represent an operation
to be performed on the
elements of an object
structure. Visitor lets you
define a new operation
without changing the
classes of the elements on
which it operates”

A client traverses an object graph and for
each element invokes accept (Visitor v)
which in turn calls back on the visitor
with itself – i.e. v.visit (this).
Consequently the Visitor gets notified
when an object is traversed and what type
the traversed object is. Each Visitor
subclass has to support every type of
object that will be traversed

Pros.
• cleaner code – factors out type specific

event handling from classes and
centralises it in a Visitor

• easy to add a new “operation” for all
Visitable classes – an operation is
implemented as a Visitor subclass with a
handler method for each Visitable object
type

• can traverse multiple object types in the
same traversal – unlike Iterator which
can only traverse one type at a time

• useful for running a variety of reports –
without Visitor every class that you’d
want to report on would have to have a
custom method per report

Cons.
• if a new Visitable class is added, all

Visitor subclasses have to be extended to
support it

• might break encapsulation - the Visitor
needs access to the elements details

Design Patterns Notes 28/03/2002

 8

Comparison of patterns
Adapter

• Adapter vs. Bridge
Bridge is used to support interoperability at design time – i.e. to support current implementations and
future variations thereof.
Adapter is used to support interoperability after design time – with existing classes that potentially
cannot be modified (e.g. third-party libraries); to support unknown or unplanned interoperability in
the future.

• Adapter vs. Proxy

A Proxy is a surrogate for the Target so the interface is identical.
In contrast, an Adapter changes the interface (the Adaptee’s).

• Adapter vs. Facade
Facade defines a new, simplified interface.
In contrast, an Adapter reuses an existing interface (the Adapter’s)

Decorator
• Decorator vs. Strategy

Decorator changes the “skin”, Strategy changes the “guts”

• Decorator vs. Adapter
Decorator extends behaviour while maintaining the interface
Adapter appears change the interface.

Visitor

• Visitor vs. Iterator
Visitor can traverse different object types within the same traversal.
Iterator only traverses one object type per traversal.

• Visitor vs. Chain of Responsibility
C.O.R. works up the handler hierarchy – from specialized to generic
A Visitor subclass is totally specific to that “operation”.

Design Patterns Notes 28/03/2002

 9

Patterns in J2EE
General.

• Bridge
Anything that provides a generic interface to a vendor specific product – JDBC, JMS, JNDI, JavaMail.

• Facade.
Anything that hides the complexity from the client – InitialContext, Connection, DataSource

Servlets / JSPs

• Decorator, Chain Of Responsibility
 – Servlet 2.3 Filter

• Singleton - ServletContext, only one per application

JDBC

• Iterator – ResultSet

JNDI

• Iterator - NamingEnumeration, etc.
• Observer - EventContext.addNamingListener (.., NamingListener);

EJB

• Proxy, Facade - Remote interface
The stub and skeleton combined act as a proxy to a remote EJB object.
The stub and skeleton combined act as a facade – hides the networking details from the client.

• Abstract Factory - EJBHome

A client gets a reference to a home object which implements the EJBHome interface (analogous to
AbstractFactory). The client uses the home object to create an EJB object which implements EJBHome
(analogous to AbstractProduct).
N.B. with EJB the create methods only return a single Product so only one in the family

It’s tempting to say that the FactoryMethod is used in EJBHome but on balance it doesn’t quite match : the
container implementation of the EJBObject may defer creation to a subclass but it’s unlikely (create methods
are different for every EJB); the EJBObject adapts the bean class interface

• Decorator , Adapter - Remote interface
The container provides implementations for EJBHome and EJBObject. The implementations apply
transactions/security to methods before delegating the request to the bean class – e.g. create () checks if the
role is allowed to execute the method, if so bean.ejbCreate () is executed

• Facade - Session Facade (a single session bean method manipulates multiple entity beans)
• Memento - Value Objects, SFSB activation/passivation
• Command - transaction logging

• Flyweight - Instance pooling

A SLSB may contain intrinsic state (e.g. a socket connection). When a client uses a SLSB they pass in
extrinsic state (e.g. the parameters to the method call). Consequently, a small pool of objects can support a
large number of clients.

• Observer - EJB 2.0 MessageDrivenBean
• Interpreter - EJB 2.0 QL

• Template Method - EJB 2.0 CMP

Persistent fields / relationships declared as abstract methods in the bean class. The bean uses the
abstract/primitive methods in other methods. The container subclasses the bean class and implements the
abstract methods. When a client references the EJB object, they’re using the container sub-classed version.

JMS
• Mediator, Observer - Publish/Subscriber

The MOM acts as a Mediator between Colleagues, which in this case are the Subject(s) and Observer(s)

	Structured bookmarks
	N.B. in the following pattern descriptions, the terms abstract class and interface are equivalent
	Comparison of patterns
	Adapter
	Decorator
	Visitor
	Patterns in J2EE

