
 1

Common Architecture notes.
Architecture attributes.
There are 7 widely accepted attributes that affect architecture :

• reliability (part of RAS)
An end-user of a system will regard the service as reliable if it’s available when they want to use it,
working (i.e. without errors) and performing within acceptable limits.

• availability (part of RAS)
”The degree to which a system suffers degradation or interruption in its service to the customer as a
consequence of failures of one or more of its parts.” Components in the system are available upon
request. Usually stated in terms of uptime (e.g. 99.999% a.k.a. the “5 9s”)

• serviceability (part of RAS)
A.k.a. manageability. ”The ease with which corrective or preventative maintenance can be
performed on a system (e.g. by a hardware engineer). Higher serviceability improves availability and
reduces service cost.” The effort required to maintain the system on a day-to-day basis – the more
complex the system, the more difficult it is to add components, troubleshoot, etc. A system can be
made more serviceable with the use of tools – e.g. network monitors, deployment tools, etc.

• performance
The system performs within acceptable limits. Usually measured in terms of response time or
transactions per second. There’s no point to the service being available if it takes 10x the normal
time to process a transaction. Modular architectures are easier to performance tune as components
can be individually targeted.

• scalability
How the system copes (or would cope) with additional demand. Usually stated in terms of a graph
of performance under various loads – i.e. linear scalability. A system can be scaled horizontally
(e.g. add more web servers), vertically (e.g. use the expansion capabilities of existing kit) or
diagonally (horizontally and vertically).

• security
How well the system protects components against potential attacks (confidentiality, integrity or
denial-of-service). “A combination of processes, products and people.” Modular architectures are
easier to secure as components can be individually targeted.

• extensibility
A.k.a. maintainability, adaptability. A measure of the flexibility of a system over time – can it be
extended / modified to suit new business requirements. Modular architectures are inherently
extensible as components can be added/replaced without impact existing functionality. Open
standards/systems assists with extensibility – as the system isn’t tied to a particular vendor, any
suitable product can be used for extensions to the system.

Relationships between attributes.

Attribute Function of
Reliability Availability, Performance – if the system isn’t available or is running very slow, it isn’t reliable;

Serviceability – a highly available system may require clustering, etc. so complex to manage
Availability Serviceability – if there are multiple instances available, one can be brought down for

maintenance but users can still access resources
Serviceability Extensibility – extensibility and serviceability are at opposite ends of the scale; the more

extensible (i.e. modular) the system is, the harder it is to manage
Performance Extensibility, Scalability – if the system is modular, specific areas can be tuned; the system can

be scaled to increase performance
Scalability Extensibility – if modular, easier to scale vertically/horizontally
Security Serviceability – if the architecture is complex, management of security is difficult
Extensibility Serviceability – if the architecture is complex, it’s difficult to extend

When designing an architecture, it’s necessary to balance the attributes above as required for the target system.

Common Architecture Notes 28/03/2002

 2

Architecture models.
1-tier
Monolithic, “all-in-one” model – e.g. clients are “dumb” terminals connected directly to the mainframe.
Problems with the 1-tier model are :

• any change affects the entire system
• vertical scalability only – limited to the physical expansion capabilities of a single server
• single point of failure
• interoperability – limited connectivity

2-tier
Typically composed of multiple clients and a single server; the clients connect to the server over a network :

• client
The client is fat – e.g. implements the GUI, retrieves data from the server(s), performs business logic
based on the data.

• server
Typically a database. Provides a shared data-store for the client.
The server doesn’t typically implement business logic. Later revisions to the model implement some
of the business logic on the server as stored procedures (a.k.a. fat servers).

Problems with the 2-tier model are :
• the business logic may be complex and computationally expensive. Consequently, the client may

require powerful hardware
• client components are tightly coupled, not modular – e.g. a change to the GUI means shipping the

whole application to every client
• data retrieval - each client has to make a direct connection to each server it needs data from. Also,

the results transferred may be large and transferred using an inefficient (and perhaps proprietary)
protocol

• fat servers use stored procedures which aren’t very portable.

n-tier
Composed of :

• client tier
Components that execute on the client. The business tier is common to all client types - some client
components talk to components in the business tier directly (e.g. thick clients such as EJB
application clients), others via the presentation tier (e.g. thin clients such as web browsers).

• presentation tier
Provides presentation specific support for the client tier. Acts as a proxy between the client tier and
the business tier. E.g. a servlet accepts HTTP requests from a web browser in the client tier. The
request is translated to a generic business event and passed to the business tier. Responses are
reformatted for presentation purposes (e.g. store result in session, generate HTML redirect for JSP)
and transmitted back over HTTP for display by the web browser.

• business tier
Implemented as business process objects (provide the business logic – e.g. session beans) and
business objects (provide an integrated, objectified view of the data tier with support for automated
synchronization – e.g. entity beans). The application server provides support for security,
transactions, pooling, caching etc. in this tier.

• data tier
Also known as the EIS tier (Enterprise Information System). Typical components include databases,
mainframes, socket servers, etc. Typically components in the business tier access the data tier
abstractly using a DAO (Data Access Object) helper class. The DAO takes care of the specifics of
data retrieval on behalf of the business objects.

Common Architecture Notes 28/03/2002

 3

Architecture attribute / model evaluation.

 1-tier 2-tier n-tier
Reliability Mixed – risk of

failure
Mixed – availability and
performance issues

Good – availability and
performance are good

Availability Poor – single point of
failure

Poor – single point of failure
(usually a single database)

Good – Pros: multiple
instances (no single point of
failure); Cons: expensive

Serviceability Good – Pros:
everything in one
place, simple to
troubleshoot; Cons:
tightly-coupled

Poor – Client: updates have to
be applied to all clients in turn;
Server: ok - everything in one
place; simple to troubleshoot

Mixed – Pros: multiple
instances (facilitates day-to-day
maintenance); centralised
business logic so easy to
update; Cons: complex;
distributed in nature; difficult to
troubleshoot; requires ASAs
(app server admins), DBAs

Performance Mixed – Pros: no
remote process
communication;
Cons: a runaway
process could affect
others

Poor – Client: result may be
large; result data transfer
protocol may be inefficient;
client may be underpowered
(local processing may be
intensive); Server: ok – e.g. DB
caching

Good – Pros: load balanced
over multiple instances;
instance and DB pooling;
caching; specific modules can
be tuned in isolation; Cons:
process communication
overhead (e.g. remote method
invocation creates an overhead
which affects performance)

Scalability Poor – vertical
scalability only;
expansion
capabilities are
physically limited
(e.g. free CPU slots,
terminal ports)

Poor – Client: each client
requires a separate DB
connection; Server: server can
be scaled vertically; some
horizontal scaling is possible
but potentially requires client
intelligence

Good – modular which
supports vertical/horizontal
scaling; multiple instances;
demand-based pooling

Security Good – connectivity
is physically limited

Poor – Client: difficult to
enforce the security policy (fat
clients are distributed all over
the place; could be
used/accessed by anyone);
available options are
SSL/VPN/user authentication
(too coarse); Server: has to be
exposed to the “outside” world
for client access so vulnerable
to attack

Good – Pros: security can be
applied to each tier and targeted
where required; Cons: complex
architecture so something could
be missed; more to secure so
could be expensive

Extensibility Poor – any change
affects the entire
system; component
reuse difficult due to
tight-coupling

Poor – Client: client tightly-
coupled to the business logic
(although code may be reused
for clients that support the
language the code is written in,
there would be multiple
deployments); Server: if using a
fat server, stored procedures
have to be provided for each
DB used

Good – modular in nature so
components can be
added/replaced as required;
business logic is centralised on
the app servers

Summary: 1-tier : MPG-MPG-P,
2-tier : Mostly Poor, reliability Mixed
n-tier : Mostly Good, serviceability Mixed

Common Architecture Notes 28/03/2002

 4

Common concepts.
Load sharing.
Load sharing is different to load balancing – the load is distributed arbitrarily without any feedback from the
components in use.

• DNS Round-Robin - setup multiple alias records for a host
• DNS MX records - MX allows multiple mail hosts to be set
• Web server redirect - setup a redirect from www to www1/www2 using JSP/servlets/Javascript

Pros Cons
1. simple to setup
2. cheap

1. if a server goes down, clients will continue to be directed to it. With DNS the problem is
aggravated by the fact that clients will cache DNS and any changes to DNS may take time to
propagate through the public DNS servers.
2. load sharing doesn’t distribute load where it’s needed – e.g. server 1 overloaded, server 2 idle
3. the Web server redirect is only suitable for HTTP

Load partitioning
Clients are sent to particular servers based on their state – e.g. if (userNum < 10,000) go to server 1. Yahoo/Hotmail
use this technique for webmail - us.f206.mail.yahoo.com Cons: doesn’t distribute load, users locked to one server.

Load balancing & fault tolerance.
Load balancing uses a family of algorithms (e.g. allocate 60% to server 1 and 40% server 2) and feedback from the
components (e.g. if a server is down it’s removed from the valid servers list) to intelligently distribute load and assist
with fault tolerance.

• hardware
Usually a network device (such as Cisco Local Director, BIG-IP, Alteon) that appears as a single IP address
and routes traffic to any servers in the active server list for any protocol (done at the network level). The
device monitors the state of the machines in the active server list and automatically patches them out if they go
down. If required, the device can use “sticky” connections – once a connection is established, always route the
client to the same server (unless the server dies)

• software
Either used in conjunction with a hardware device or standalone. One or more application servers appear as a
single server and communicate with each other via some form of broadcast mechanism. The server uses the
naming service and transparent request redirection to balance clients; the clients use smart stubs to balance
requests across servers.

Pros Cons
1. uses intelligent algorithms and feedback to truly balance the load / provide fault tolerance
2. transparency – client is unaware of any changes
3. hardware : appears as a single IP so cannot be cached by clients
4. hardware : redirects at the network level so works for any application

1. difficult to setup
2. expensive

Firewalls.
DMZ - "A network added between a protected network and an external network in order to provide an
additional layer of security." – i.e. provides physical separation of the networks by putting each on it’s own
subnet. Subnets can only be traversed by going through a router/firewall – control can be applied at this
point.

Traditional Firewall Modern firewall
• packet based filtering - filter at network

layer; block by IP, port, etc.
• application level control - filter at

application layer; understand HTTP,
FTP, etc.

• stateful inspection
implement control at network layer but understand higher layers
(e.g. FTP, HTTP). Store state for individual connections and
control access - e.g. open up FTP for a particular user; close when
user session completes

• proxy style access control
Filter by request type, content type, etc.
Deny web surfing during office hours, etc.
Built in user-authentication - e.g. pops up browser authentication;
telnet password is handled by firewall

Common Architecture Notes 28/03/2002

 5

Architecture layers.
Architecture deals with components at three levels :

• infra-structural
Underpins the platform components. Typical infra-structural components include the network
(cable, hubs, firewalls, routers), the UPS, the Internet connection, etc.

• platform
Underpins the application components. Typical platform components include hardware (servers,
disk arrays), services (operating system, Web/EJB containers, DB servers, DNS servers, clustering,
network monitoring) and software (home-grown load monitors)

• application
The application components run on top of the platform components. Typical application
components include web applications, EJB components, standalone daemons/applications.

Sample application areas for architecture attributes.
Key : I = infrastructure, P = platform, A = application.

• reliability
(I) clustering – HLB (hardware LB) with feedback
(I) redundant kit – active/passive firewall pair, spare kit at site
(I) co-location – fire/power protection, redundant telecomms, monitors
(I) DNS – MX, RR
(I) staged deployment of new services
(I) DR site
(I) backup telecomms sourced from multiple suppliers
(P) clustering – application servers
(P) hardware – hardware monitors/watchdogs, EDO memory, RAID, managed file system
(P) software – app resilience / load monitors, transaction logs for DR
(P) general – use best hardware/software products within budget
(P) general – QA for release procedures, software/component testing, etc.
(A) graceful degradation (timeouts, bypass, pass-through, etc.)

• scalability
(I) horizontal – hardware clustering via HLB/DNS RR; partition network by use (e.g. perimeter,
app, etc.), add extra kit/push up kit from lower layer; common OS/app build
(I) co-located sites – burstable bandwidth, rackspace, etc.
(P) horizontal – app server clustering; distributed components
(P) vertical – add extra CPU/memory/disk; app server pooling, activation/passivation
(A) multi-threading
(A) short lived transactions
(A) partition content by type – e.g. static / dynamic
(A) graceful degradation

• security
(I) firewalls, DMZ’s
(I) NAT, PAT
(I) proxy servers
(I) DNS – only expose required addresses
(I) physical access
(I) third-party network testing services
(P) OS security – OS hardening, TCP wrappers, ACL
(P) JVM security – security.policy
(P) app server security – EJB security mechanisms, certificates, etc.
(A) SSL, server sessions, domain range checks, lockdown, audit trails

