
JavaServer Pages™
Specification

Version2.1

Send comments to jsr-245-comments@jcp.org

Final Release - May 8, 2006 Pierre Delisle, Jan Luehe, Mark Roth

4150 Network Circle
Santa Clara, CA 95054, USA
650 960-1300 fax: 650 969-9131

iii

JavaServer Pages 2.1 Specification

Specification: JSR-000245 JavaServer(tm) Pages ("Specification")

Version: 2.1

Status: Final Release

Release: 8 May 2006

Copyright 2006 SUN MICROSYSTEMS, INC.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. _License for Evaluation Purposes_. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view, download, use
and reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing applications
intended to run on an implementation of the Specification, provided that such applications do not themselves implement
any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting brief
portions of the Specification in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Specification.

2. _License for the Distribution of Compliant Implementations_. Sun also grants you a perpetual, non-exclusive, non-
transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable
copyrights or, subject to the provisions of subsection 4 below, patent rights it may have covering the Specification to create
and/or distribute an Independent Implementation of the Specification that: (a) fully implements the Specification
including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the
Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and
(c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your
not acting outside its scope. No license is granted hereunder for any other purpose (including, for example, modifying the
Specification, other than to the extent of your fair use rights, or distributing the Specification to third parties). Also, no
right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder.
Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

3. _Pass-through Conditions_. You need not include limitations (a)-(c) from the previous paragraph or any other particular
"pass through" requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to Independent Implementations (and products derived from them) that
satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass through to your
licensees any licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any
claims concerning their implementation’s compliance with the Specification in question.

4. _Reciprocity Concerning Patent Licenses_.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Specification, such license is conditioned upon your offering on fair,
reasonable and non-discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-transferable,
worldwide license under Your patent rights which are or would be infringed by all technically feasible implementations
of the Specification to develop, distribute and use a Compliant Implementation.

iv

JavaServer Pages 2.1 Specification

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2, whether or
not their infringement can be avoided in a technically feasible manner when implementing the Specification, such license
shall terminate with respect to such claims if You initiate a claim against Sun that it has, in the course of performing its
responsibilities as the Specification Lead, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2 above,
where the infringement of such claims can be avoided in a technically feasible manner when implementing the
Specification such license, with respect to such claims, shall terminate if You initiate a claim against Sun that its making,
having made, using, offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. _Definitions_. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the
Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an appropriate
and separate license from Sun, includes any of Sun’s source code or binary code materials; "Licensor Name Space" shall
mean the public class or interface declarations whose names begin with "java", "javax", "com.sun" or their equivalents
in any subsequent naming convention adopted by Sun through the Java Community Process, or any recognized successors
or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK
User’s Guide provided by Sun which corresponds to the Specification and that was available either (i) from Sun’s 120 days
before the first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more
recently than 120 days from such release but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the scope
of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any product. In addition, the Specification could
include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR
HAVING, IMPELEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SUN AND/OR
ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your
use of the Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any
claims that later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

v

JavaServer Pages 2.1 Specification

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government
prime contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-
4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree
that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-
exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, conditions, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

vi

JavaServer Pages 2.1 Specification

viiJavaServer Pages 2.1 Specification

Contents

Status . xxi

Preface . xxiii
Overview . xxxi

The JavaServer Pages™ Technology . xxxi
Basic Concepts . xxxiii
Users of JavaServer Pages . xxxvi

Part I . 1-1

JSP.1 Core Syntax and Semantics . 1-3
JSP.1.1 What Is a JSP Page . 1-3

JSP.1.1.1 Web Containers and Web Components 1-3
JSP.1.1.2 Generating HTML . 1-4
JSP.1.1.3 Generating XML . 1-4
JSP.1.1.4 Translation and Execution Phases 1-4
JSP.1.1.5 Validating JSP pages . 1-5
JSP.1.1.6 Events in JSP Pages . 1-6
JSP.1.1.7 JSP Configuration Information 1-6
JSP.1.1.8 Naming Conventions for JSP Files 1-6
JSP.1.1.9 Compiling JSP Pages . 1-7
JSP.1.1.10 Debugging JSP Pages 1-8

JSP.1.2 Web Applications . 1-8
JSP.1.2.1 Relative URL Specifications 1-9

JSP.1.3 Syntactic Elements of a JSP Page 1-10
JSP.1.3.1 Elements and Template Data 1-10
JSP.1.3.2 Element Syntax . 1-10
JSP.1.3.3 Start and End Tags . 1-11
JSP.1.3.4 Empty Elements . 1-12
JSP.1.3.5 Attribute Values . 1-12
JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements

 . 1-12
JSP.1.3.7 Valid Names for Actions and Attributes 1-14
JSP.1.3.8 White Space . 1-14
JSP.1.3.9 JSP Documents . 1-15

viii

JavaServer Pages 2.1 Specification

JSP.1.3.10 JSP Syntax Grammar 1-16
JSP.1.4 Error Handling . 1-33

JSP.1.4.1 Translation Time Processing Errors 1-33
JSP.1.4.2 Request Time Processing Errors 1-34
JSP.1.4.3 Using JSPs as Error Pages 1-34

JSP.1.5 Comments . 1-35
JSP.1.5.1 Comments in JSP Pages in Standard Syntax . 1-35
JSP.1.5.2 Comments in JSP Documents 1-36

JSP.1.6 Quoting and Escape Conventions 1-36
JSP.1.7 Overall Semantics of a JSP Page 1-38
JSP.1.8 Objects . 1-39

JSP.1.8.1 Objects and Variables 1-40
JSP.1.8.2 Objects and Scopes . 1-40
JSP.1.8.3 Implicit Objects . 1-41
JSP.1.8.4 The pageContext Object 1-43

JSP.1.9 Template Text Semantics . 1-44
JSP.1.10 Directives . 1-44

JSP.1.10.1 The page Directive . 1-44
JSP.1.10.2 The taglib Directive . 1-51
JSP.1.10.3 The include Directive 1-53
JSP.1.10.4 Implicit Includes . 1-54
JSP.1.10.5 Including Data in JSP Pages 1-54
JSP.1.10.6 Additional Directives for Tag Files 1-56

JSP.1.11 EL Elements . 1-56
JSP.1.12 Scripting Elements . 1-56

JSP.1.12.1 Declarations . 1-57
JSP.1.12.2 Scriptlets . 1-58
JSP.1.12.3 Expressions . 1-59

JSP.1.13 Actions . 1-60
JSP.1.14 Tag Attribute Interpretation Semantics 1-60

JSP.1.14.1 Request Time Attribute Values 1-60
JSP.1.14.2 Type Conversions . 1-61

JSP.2 Expression Language . 1-65
JSP.2.1 Syntax of expressions in JSP pages: ${} vs #{} 1-65
JSP.2.2 Expressions and Template Text 1-66
JSP.2.3 Expressions and Attribute Values 1-66

JSP.2.3.1 Static Attribute . 1-67
JSP.2.3.2 Dynamic Attribute . 1-67
JSP.2.3.3 Deferred Value . 1-68

ix

JavaServer Pages 2.1 Specification

JSP.2.3.4 Deferred Method . 1-68
JSP.2.3.5 Dynamic Attribute or Deferred Expression . . 1-69
JSP.2.3.6 Examples of Using ${} and #{} 1-69

JSP.2.4 Implicit Objects . 1-70
JSP.2.5 Deactivating EL Evaluation . 1-71
JSP.2.6 Disabling Scripting Elements 1-71
JSP.2.7 Invalid EL expressions . 1-71
JSP.2.8 Errors, Warnings, Default Values 1-72
JSP.2.9 Resolution of Variables and their Properties 1-72
JSP.2.10 Functions . 1-73

JSP.2.10.1 Invocation Syntax . 1-74
JSP.2.10.2 Tag Library Descriptor Information 1-74
JSP.2.10.3 Example . 1-75
JSP.2.10.4 Semantics . 1-75

JSP.3 JSP Configuration . 1-77
JSP.3.1 JSP Configuration Information in web.xml 1-77
JSP.3.2 Taglib Map . 1-77
JSP.3.3 JSP Property Groups . 1-78

JSP.3.3.1 JSP Property Groups 1-78
JSP.3.3.2 Deactivating EL Evaluation 1-79
JSP.3.3.3 Disabling Scripting Elements 1-81
JSP.3.3.4 Declaring Page Encodings 1-82
JSP.3.3.5 Defining Implicit Includes 1-82
JSP.3.3.6 Denoting XML Documents 1-83
JSP.3.3.7 Deferred Syntax (character sequence #{) 1-84
JSP.3.3.8 Removing whitespaces from template text . . 1-84

JSP.4 Internationalization Issues . 1-87
JSP.4.1 Page Character Encoding . 1-88

JSP.4.1.1 Standard Syntax . 1-88
JSP.4.1.2 XML Syntax . 1-89

JSP.4.2 Response Character Encoding 1-90
JSP.4.3 Request Character Encoding . 1-91
JSP.4.4 XML View Character Encoding 1-91
JSP.4.5 Delivering Localized Content 1-91

JSP.5 Standard Actions . 1-93
JSP.5.1 <jsp:useBean> . 1-93
JSP.5.2 <jsp:setProperty> . 1-99
JSP.5.3 <jsp:getProperty> . 1-101

x

JavaServer Pages 2.1 Specification

JSP.5.4 <jsp:include> . 1-103
JSP.5.5 <jsp:forward> . 1-105
JSP.5.6 <jsp:param> . 1-106
JSP.5.7 <jsp:plugin> . 1-107
JSP.5.8 <jsp:params> . 1-109
JSP.5.9 <jsp:fallback> . 1-109
JSP.5.10 <jsp:attribute> . 1-109
JSP.5.11 <jsp:body> . 1-112
JSP.5.12 <jsp:invoke> . 1-113

JSP.5.12.1 Basic Usage . 1-113
JSP.5.12.2 Storing Fragment Output 1-113
JSP.5.12.3 Providing a Fragment Access to Variables . . 1-114

JSP.5.13 <jsp:doBody> . 1-115
JSP.5.14 <jsp:element> . 1-116
JSP.5.15 <jsp:text> . 1-118
JSP.5.16 <jsp:output> . 1-119
JSP.5.17 Other Standard Actions . 1-123

JSP.6 JSP Documents . 1-125
JSP.6.1 Overview of JSP Documents and of XML Views . . . 1-125
JSP.6.2 JSP Documents . 1-127

JSP.6.2.1 Identifying JSP Documents 1-127
JSP.6.2.2 Overview of Syntax of JSP Documents 1-128
JSP.6.2.3 Semantic Model . 1-129
JSP.6.2.4 JSP Document Validation 1-130

JSP.6.3 Syntactic Elements in JSP Documents 1-131
JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries

1-131
JSP.6.3.2 The jsp:root Element 1-132
JSP.6.3.3 The jsp:output Element 1-133
JSP.6.3.4 The jsp:directive.page Element 1-133
JSP.6.3.5 The jsp:directive.include Element 1-134
JSP.6.3.6 Additional Directive Elements in Tag Files . 1-134
JSP.6.3.7 Scripting Elements . 1-134
JSP.6.3.8 Other Standard Actions 1-135
JSP.6.3.9 Template Content . 1-135
JSP.6.3.10 Dynamic Template Content 1-136

JSP.6.4 Examples of JSP Documents 1-136
JSP.6.4.1 Example: A simple JSP document 1-137
JSP.6.4.2 Example: Generating Namespace-aware documents

xi

JavaServer Pages 2.1 Specification

1-138
JSP.6.4.3 Example: Generating non-XML documents 1-138
JSP.6.4.4 Example: Using Custom Actions and Tag Files 1-

139
JSP.6.5 Possible Future Directions for JSP documents 1-141

JSP.6.5.1 Generating XML Content Natively 1-141
JSP.6.5.2 Schema and XInclude Support 1-142

JSP.7 Tag Extensions . 1-143
JSP.7.1 Introduction . 1-143

JSP.7.1.1 Goals . 1-144
JSP.7.1.2 Overview . 1-145
JSP.7.1.3 Classic Tag Handlers 1-146
JSP.7.1.4 Simple Examples of Classic Tag Handlers . 1-146
JSP.7.1.5 Simple Tag Handlers 1-148
JSP.7.1.6 JSP Fragments . 1-150
JSP.7.1.7 Simple Examples of Simple Tag Handlers . 1-150
JSP.7.1.8 Attributes With Dynamic Names 1-152
JSP.7.1.9 Event Listeners . 1-152
JSP.7.1.10 JspId Attribute . 1-152
JSP.7.1.11 Resource Injection . 1-152

JSP.7.2 Tag Libraries . 1-153
JSP.7.2.1 Packaged Tag Libraries 1-154
JSP.7.2.2 Location of Java Classes 1-154
JSP.7.2.3 Tag Library directive 1-154

JSP.7.3 The Tag Library Descriptor 1-155
JSP.7.3.1 Identifying Tag Library Descriptors 1-155
JSP.7.3.2 TLD resource path . 1-156
JSP.7.3.3 Taglib Map in web.xml 1-157
JSP.7.3.4 Implicit Map Entries from TLDs 1-157
JSP.7.3.5 Implicit Map Entries from the Container . . . 1-157
JSP.7.3.6 Determining the TLD Resource Path 1-158
JSP.7.3.7 Translation-Time Class Loader 1-159
JSP.7.3.8 Assembling a Web Application 1-160
JSP.7.3.9 Well-Known URIs . 1-160
JSP.7.3.10 Tag and Tag Library Extension Elements . . 1-160

JSP.7.4 Validation . 1-164
JSP.7.4.1 Translation-Time Mechanisms 1-164
JSP.7.4.2 Request-Time Errors 1-165

JSP.7.5 Conventions and Other Issues 1-166

xii

JavaServer Pages 2.1 Specification

JSP.7.5.1 How to Define New Implicit Objects 1-166
JSP.7.5.2 Access to Vendor-Specific information 1-167
JSP.7.5.3 Customizing a Tag Library 1-167

JSP.8 Tag Files . 1-169
JSP.8.1 . Overview 1-169
JSP.8.2 Syntax of Tag Files . 1-170
JSP.8.3 Semantics of Tag Files . 1-170
JSP.8.4 Packaging Tag Files . 1-172

JSP.8.4.1 Location of Tag Files 1-173
JSP.8.4.2 Packaging in a JAR . 1-173
JSP.8.4.3 Packaging Directly in a Web Application . . 1-174
JSP.8.4.4 Packaging as Precompiled Tag Handlers . . . 1-175

JSP.8.5 Tag File Directives . 1-176
JSP.8.5.1 The tag Directive . 1-176
JSP.8.5.2 The attribute Directive 1-179
JSP.8.5.3 The variable Directive 1-181

JSP.8.6 Tag Files in XML Syntax . 1-184
JSP.8.7 XML View of a Tag File . 1-184
JSP.8.8 Implicit Objects . 1-185
JSP.8.9 Variable Synchronization . 1-186

JSP.8.9.1 Synchronization Points 1-187
JSP.8.9.2 Synchronization Examples 1-188

JSP.9 Scripting . 1-193
JSP.9.1 Overall Structure . 1-193

JSP.9.1.1 Valid JSP Page . 1-193
JSP.9.1.2 Reserved Names . 1-194
JSP.9.1.3 Implementation Flexibility 1-194

JSP.9.2 Declarations Section . 1-195
JSP.9.3 Initialization Section . 1-195
JSP.9.4 Main Section . 1-195

JSP.9.4.1 Template Data . 1-195
JSP.9.4.2 Scriptlets . 1-196
JSP.9.4.3 Expressions . 1-196
JSP.9.4.4 Actions . 1-196

JSP.10 XML View . 1-199
JSP.10.1 XML View of a JSP Document, JSP Page or Tag File . . 1-

199
JSP.10.1.1 JSP Documents and Tag Files in XML Syntax . 1-

xiii

JavaServer Pages 2.1 Specification

199
JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax 1-200
JSP.10.1.3 JSP Comments . 1-201
JSP.10.1.4 The page Directive . 1-201
JSP.10.1.5 The taglib Directive 1-201
JSP.10.1.6 The include Directive 1-202
JSP.10.1.7 Declarations . 1-202
JSP.10.1.8 Scriptlets . 1-202
JSP.10.1.9 Expressions . 1-203
JSP.10.1.10 Standard and Custom Actions 1-203
JSP.10.1.11 Request-Time Attribute Expressions 1-203
JSP.10.1.12 Template Text and XML Elements 1-204
JSP.10.1.13 The jsp:id Attribute 1-205
JSP.10.1.14 The tag Directive . 1-205
JSP.10.1.15 The attribute Directive 1-205
JSP.10.1.16 The variable Directive 1-206

JSP.10.2 Validating an XML View of a JSP page 1-206
JSP.10.3 Examples . 1-206

JSP.10.3.1 A JSP document . 1-207
JSP.10.3.2 A JSP page and its corresponding XML View . 1-

207
JSP.10.3.3 Clearing Out Default Namespace on Include 1-208
JSP.10.3.4 Taglib Direcive Adds to Global Namespace 1-209
JSP.10.3.5 Collective Application of Inclusion Semantics . 1-

209

Part II. 2-1

JSP.11 JSP Container . 2-3
JSP.11.1 JSP Page Model . 2-3

JSP.11.1.1 Protocol Seen by the Web Server 2-3
JSP.11.2 JSP Page Implementation Class 2-5

JSP.11.2.1 API Contracts . 2-6
JSP.11.2.2 Request and Response Parameters 2-7
JSP.11.2.3 Omitting the extends Attribute 2-8
JSP.11.2.4 Using the extends Attribute 2-10

JSP.11.3 Buffering . 2-11
JSP.11.4 Precompilation . 2-12

JSP.11.4.1 Request Parameter Names 2-12

xiv

JavaServer Pages 2.1 Specification

JSP.11.4.2 Precompilation Protocol 2-13
JSP.11.5 Debugging Requirements . 2-13

JSP.11.5.1 Line Number Mapping Guidelines 2-14

JSP.12 Core API . 2-17
javax.servlet.jsp . 2-19

ErrorData . 2-22
HttpJspPage . 2-24
JspApplicationContext . 2-26
JspContext . 2-29
JspEngineInfo . 2-35
JspException . 2-37
JspFactory . 2-39
JspPage . 2-42
JspTagException . 2-44
JspWriter . 2-46
PageContext . 2-56
SkipPageException . 2-65

JSP.13 Tag Extension API . 2-67
javax.servlet.jsp.tagext. 2-69

BodyContent . 2-88
BodyTag . 2-91
BodyTagSupport . 2-95
DynamicAttributes . 2-99
FunctionInfo . 2-100
IterationTag . 2-102
JspFragment . 2-105
JspIdConsumer . 2-107
JspTag . 2-108
PageData . 2-109
SimpleTag . 2-111
SimpleTagSupport . 2-114
Tag . 2-118
TagAdapter . 2-123
TagAttributeInfo . 2-126
TagData . 2-131
TagExtraInfo . 2-134
TagFileInfo . 2-137
TagInfo . 2-139

xv

JavaServer Pages 2.1 Specification

TagLibraryInfo . 2-146
TagLibraryValidator . 2-151
TagSupport . 2-154
TagVariableInfo . 2-159
TryCatchFinally . 2-161
ValidationMessage . 2-163
VariableInfo . 2-165

JSP.14 Expression Language API . 2-169
javax.servlet.jsp.el. 2-171

ELException . 2-174
ELParseException . 2-176
Expression . 2-178
ExpressionEvaluator . 2-180
FunctionMapper . 2-183
ImplicitObjectELResolver . 2-184
ScopedAttributeELResolver . 2-189
VariableResolver . 2-194

Part III . 3-1
JSP.A Packaging JSP Pages . 3-3

JSP.A.1 A Very Simple JSP Page . 3-3
JSP.A.2 The JSP Page Packaged as Source in a WAR File 3-3
JSP.A.3 The Servlet for the Compiled JSP Page 3-4
JSP.A.4 The Web Application Descriptor 3-5
JSP.A.5 The WAR for the Compiled JSP Page 3-6

JSP.B JSP Elements of web.xml . 3-7

JSP.B.1 XML Schema for JSP 2.1 Deployment Descriptor 3-7
JSP.B.2 XML Schema for JSP 2.0 Deployment Descriptor . . . 3-15

JSP.C Tag Library Descriptor Formats 3-23

JSP.C.1 XML Schema for TLD, JSP 2.1 3-23
JSP.C.2 XML Schema for TLD, JSP 2.0 3-53
JSP.C.3 DTD for TLD, JSP 1.2 . 3-78
JSP.C.4 DTD for TLD, JSP 1.1 . 3-87

JSP.D Page Encoding Detection . 3-93

JSP.D.1 Detection Algorithm for JSP pages 3-93

xvi

JavaServer Pages 2.1 Specification

JSP.D.2 Detection Algorithm for Tag Files 3-95

JSP.E Changes . 3-99

JSP.E.1 Changes between JSP 2.1 Proposed Final Draft 2 and JSP 2.1
Final Release . 3-99

JSP.E.2 Changes between JSP 2.1 Proposed Final Draft and JSP 2.1
Proposed Final Draft 2 . 3-100

E.2.1 Resource Injection . 3-100
E.2.2 JSP document syntax and the DOCTYPE prologue

3-100
E.2.3 Page Character Encoding 3-101
E.2.4 EL Resolvers . 3-101
E.2.5 JSP Version of Tag Files 3-101
E.2.6 Unsupported Tag Directive and Attribute Directive

Attributes in Pre-2.1 Tag Files 3-101
E.2.7 Static Attribute . 3-102

JSP.E.3 Changes between JSP 2.1 Public Review and JSP 2.1 Pro-
posed Final Draft . 3-102

E.3.8 Resource Injection . 3-102
E.3.9 Deferred expressions in tag files 3-102
E.3.10 Deferred expressions for dynamic attributes . 3-102
E.3.11 ResourceBundleELResolver 3-103
E.3.12 Clarified required support for JSR-45 ("Debugging

Support for Other Languages") 3-103
E.3.13 Byte Order Mark and Page Encoding 3-103
E.3.14 TagAttributeInfo . 3-103
E.3.15 Taglib map order of precedence 3-103
E.3.16 Generics . 3-103
E.3.17 Various Clarifications 3-104

JSP.E.4 Changes between JSP 2.1 EDR and JSP 2.1 Public Review
3-104

E.4.18 Backwards Compatibility with JSP 2.0 3-104
E.4.19 Faces Action Attribute and MethodExpression . . 3-

104
E.4.20 Additional element for the TLD 3-105
E.4.21 New JspId attribute . 3-105
E.4.22 Removing whitespaces from template text . . 3-105
E.4.23 Response Status Code for JSP error page . . . 3-105
E.4.24 Comments in JSP Documents 3-105

xvii

JavaServer Pages 2.1 Specification

E.4.25 Byte Order Mark and Page Encoding 3-106
E.4.26 TagLibraryInfo . 3-106
E.4.27 SimpleTag and <body-content> 3-106
E.4.28 JspApplicationContext.addResolver() 3-106
E.4.29 Duplicate tag files . 3-106
E.4.30 Table 1-9 . 3-106
E.4.31 Restructuring of API chapters 3-107

JSP.E.5 Changes between JSP 2.0 Final and JSP 2.1 EDR1 . 3-107
E.5.32 New specification document for the Expression Lan-

guage . 3-107
E.5.33 Backwards Compatibility and Migration Guidelines

3-107
E.5.34 Chapter 2 - Expression Language 3-107
E.5.35 New class javax.servlet.jsp.JspApplicationContext 3-107
E.5.36 New method getJspApplicationContext on JspFactory 3-

108
E.5.37 Major changes to the javax.servlet.jsp.el API . 3-108
E.5.38 New method getELContext on JspContext 3-108
E.5.39 New rules for tag handler attributes 3-108
E.5.40 TLD schema now supports deferred expressions as

attributes . 3-108
E.5.41 Syntax of EL expressions 3-109
E.5.42 Constraints on the use of ${} and #{} 3-109
E.5.43 Escaping EL expressions 3-109

JSP.E.6 Changes between JSP 2.0 PFD3 and JSP 2.0 Final . 3-110
JSP.E.7 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3 . 3-111
JSP.E.8 Changes between JSP 2.0 PFD and JSP 2.0 PFD2 . . 3-113
JSP.E.9 Changes between JSP 2.0 PFD1a and JSP 2.0 PFD . 3-117
JSP.E.10 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a . 3-119
JSP.E.11 Changes between JSP 2.0 PD1 and JSP 2.0 PD2 . . . 3-120
JSP.E.12 Changes between JSP 2.0 CD2 and JSP 2.0 PD1 . . . 3-121
JSP.E.13 Changes between JSP 2.0 CD1 and JSP 2.0 CD2 . . . 3-121

E.13.44 Between CD2c and CD2 3-121
E.13.45 Between CD2b and CD2c 3-122
E.13.46 Between CD2a and CD2b 3-123
E.13.47 Changes between CD1 and CD2a 3-123

JSP.E.14 Changes between JSP 2.0 ED1 and JSP 2.0 CD1 . . . 3-123
E.14.48 JSP Fragments, .tag Files, and Simple Tag Handlers

xviii

JavaServer Pages 2.1 Specification

3-124
E.14.49 Expression Language Added 3-124
E.14.50 EBNF Fixes . 3-124
E.14.51 I18N Clarifications . 3-124
E.14.52 Other Changes . 3-124

JSP.E.15 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1 . 3-
125

E.15.53 Typographical Fixes and Version Numbers . 3-125
E.15.54 Added EBNF Grammar for JSP Standard Syntax 3-

125
E.15.55 Added Users of JavaServer Pages Section . . . 3-125
E.15.56 Added Placeholders for Expression Language and

Custom Actions Using JSP 3-125
E.15.57 Added Requirement for Debugging Support . 3-125

JSP.E.16 Changes Between PFD 2 and Final Draft 3-125
E.16.58 Added jsp:id mechanism 3-126
E.16.59 Other Small Changes 3-126
E.16.60 Clarification of role of id 3-126
E.16.61 Clarifications on Multiple Requests and Threading

3-126
E.16.62 Clarifications on JSP Documents 3-127
E.16.63 Clarifications on Well Known Tag Libraries . 3-127
E.16.64 Clarified Impact of Blocks 3-127
E.16.65 Other Small Clarifications 3-127

JSP.E.17 Changes Between 1.2 PFD 1b and PFD 2 3-128
E.17.66 Added elements to Tag Library Descriptor . . 3-128
E.17.67 Changed the way version information is encoded into

TLD . 3-128
E.17.68 Assigning String literals to Object attributes . 3-129
E.17.69 Clarification on valid names for prefix, action and at-

tributes . 3-129
E.17.70 Clarification of details of empty actions 3-129
E.17.71 Corrections related to XML syntax 3-129
E.17.72 Other changes . 3-130

JSP.E.18 Changes Between 1.2 PFD and 1.2 PFD 1b 3-130
JSP.E.19 Changes Between 1.2 PD1 and 1.2 PFD 3-130

E.19.73 Deletions . 3-131
E.19.74 Additions . 3-131

xix

JavaServer Pages 2.1 Specification

E.19.75 Clarifications . 3-131
E.19.76 Changes . 3-132

JSP.E.20 Changes Between 1.1 and 1.2 PD1 3-132
E.20.77 Organizational Changes 3-132
E.20.78 New Document . 3-133
E.20.79 Additions to API . 3-133
E.20.80 Clarifications . 3-134
E.20.81 Changes . 3-134

JSP.E.21 Changes Between 1.0 and 1.1 3-134
E.21.82 Additions . 3-134
E.21.83 Changes . 3-135

JSP.F Glossary . 3-137

xx

JavaServer Pages 2.1 Specification

xxiJavaServer Pages 2.1 Specification

Status

This is the Final Release of the JSP 2.1 specification, developed by the expert
group JSR-245 under the Java Community Process (more details at http://jcp.org/
jsr/detail/245.jsp).

The Java Community Process

The JCP produces a specification using three communities: an expert commu-
nity (the expert group), the participants of the JCP, and the public-at-large. The
expert group is responsible for the authoring of the specification through a collec-
tion of drafts. Specification drafts move from the expert community, through the
participants, to the public, gaining in detail and completeness, always feeding
received comments back to the expert group. The final draft is submitted for
approval by the Executive Committee. The expert group lead is responsible for
facilitating the workings of the expert group, for authoring the specification, and for
delivering the reference implementation and the conformance test suite.

The JCP and This Specification

The JCP is designed to be a very flexible process so each expert group can
address the requirements of the specific communities it serves.

This specification includes chapters that are derived directly from the Javadoc
comments in the API classes, but, were there to be any discrepancies, this
specification has precedence over the Javadoc comments.

The JCP process provides a mechanism for updating the specification through
a maintenance process using erratas. If available, the erratas will have precedence
over this specification.

xxii

JavaServer Pages 2.1 Specification

xxiiiJavaServer Pages 2.1 Specification

Preface

This document is the JavaServer™ Pages 2.1 Specification (JSP 2.1). This
specification is being developed following the Java Community Process (JCP).

Relation To JSP 2.0

JSP 2.1 extends the JavaServer Pages 2.0 Specification (JSP 1.2) in the follow-
ing ways:

• The JSP specification now features a unified expression language, which is the
result of the integration of the expression languages defined in the JSP 2.0 and
Faces 1.1 specifications. The new unified expression language is defined in its
own specification document, delivered along with the JSP 2.1 specification.

• The JSP 2.1 specification uses the Servlet 2.5 specification for its web seman-
tics.

• The JSP 2.1 specification requires the Java™ 2 Platform, Standard Edition ver-
sion 5.0 or later.

Backwards Compatibility with JSP 2.0

As of JSP 2.1, the character sequence #{ is reserved for EL expressions.

When used as a tag attribute value, the #{expr} syntax is evaluated by the
container only if the the jsp-version element specified in the TLD has the value
2.1 or higher. If the version specified is less than 2.1, then the {expr} syntax is
simply processed as a String literal.

xxiv

JavaServer Pages 2.1 Specification

When used in template text in a JSP page, the #{ character sequence triggers a
translation error, unless specifically allowed through a configuration setup. This
is because the #{} syntax is associated exclusively with deferred-evaluation in JSP
2.1 and does not make sense in the context of template text (only immediate
evaluation using the ${expr} syntax makes sense in template text).

In a tag file, #{expr} in template text is handled according to the tag file’s JSP
version: If the tag file’s JSP version is 2.0 or less, #{expr} in template text will not
cause any error. If the tag file’s JSP version is equal to or greater than 2.1, #{expr}
in template text must cause an error, unless it has been escaped or the tag file
contains a deferredSyntaxAllowedAsLiteral tag directive attribute set to TRUE.
See Section JSP.8.4.2, “Packaging in a JAR”, and Section JSP.8.4.3, “Packaging
Directly in a Web Application”, for how the JSP version of a tag file is
determined.

Similarly, the #{ character sequence triggers a translation error if used for a tag
attribute of a tag library where the jsp-version is greater than or equal to 2.1, and
for which the attribute is not marked as a deferred expression in the TLD.

A web-application developed for a JSP version that is prior to JSP 2.1 may
therefore suffer from the following backwards incompatibilities:

• If #{ is used in template text as a String literal, it must be
escaped using \#{, or through a configuration setup (described
below).

• When a tag library is upgraded to a jsp-version that is greater
than or equal to 2.1, then String literals specified as attribute
values that include the sequence #{ will need to be escaped
using \#{, or through a configuration setup (described below).

Configuration setup to allow the #{ character sequence as String literal

It is possible to allow the use of the #{ character sequence as a String literal (in
template text of JSP 2.1+ containers or as an attribute value for a tag-library where
jsp-version is 2.1+) through the property deferred-syntax-allowed-as-literal of JSP
Property Groups (See Section JSP.3.3.7, “Deferred Syntax (character sequence
#{)”) or the page/tag-file directive attribute

xxv

JavaServer Pages 2.1 Specification

deferredSyntaxAllowedAsStringLiteral (See Section JSP.1.10.1, “The page
Directive” and Section JSP.8.5.1, “The tag Directive”).

What this means for a JSP/Faces developer

You can run all your JSP 2.0 webapps as-is (well, almost as-is1) on the latest
and greatest JSP 2.1 containers! However, please be aware of the following if your
web-application uses third party tag libraries that are based on Faces 1.1 or earlier.

• Some new features provided by JSP 2.1 and Faces 1.2 can
only be used with Faces 1.2-based tag libraries. For example,
while EL functions may now be used in the Faces 1.2 core and
html tag libraries, they cannot be used with third party tag
libraries that are based on Faces 1.1 and earlier.

Licensing of Specification

Details on the conditions under which this document is distributed are described
in the license agreement on page v.

Who Should Read This Document

This document is the authoritative JSP 2.1 specification. It is intended to pro-
vide requirements for implementations of JSP page processing, and support by web
containers in web servers and application servers. As an authoritative document, it
covers material pertaining to a wide audience, including Page Authors, Tag Library
Developers, Deployers, Container Vendors, and Tool Vendors.

This document is not intended to be a user’s guide. We expect other
documents will be created that will cater to different readerships.

Organization of This Document

This document comprises of a number of Chapters and Appendices that are
organized into 3 parts. In addition, the document contains a “Preface” (this section),
a “Status” on page xxi, and an “Overview” on page xxxi.

1. The character sequence '#{' is now reserved by JSP. So If you are using '#{' in template
text or as a literal in an attribute value for a 1.2-based taglib, the sequence will have to be
escaped.

xxvi

JavaServer Pages 2.1 Specification

Part I contains several chapters intended for all JSP Page Authors. These
chapters describe the general structure of the language, including the expression
language, fragments, and scripting.

Part II contains detailed chapters on the JSP container engine and API in full
detail. The information in this part is intended for advanced JSP users.

Finally, Part III contains all the appendices.

Related Documents

Implementors of JSP containers and authors of JSP pages may find the follow-
ing documents worth consulting for additional information:

Historical Note

The following individuals were pioneers who did ground-breaking work on the
Java platform areas related to this specification. James Gosling’s work on a Web
Server in Java in 1994/1995 became the foundation for servlets. A larger project
emerged in 1996 with Pavani Diwanji as lead engineer and with many other key
members listed below. From this project came Sun’s Java Web Server product.

Table JSP.P-1 Some Related Web Sites

JSP specification website https://jsp-spec-public.dev.java.net

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

Java 2 Platform, Standard Edition http://java.sun.com/j2se

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home page http://java.sun.com/xml

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org

JSR-045 home page (Debugging
Support for Other Languages)

http://jcp.org/jsr/detail/45.jsp

xxvii

JavaServer Pages 2.1 Specification

Things started to move quickly in 1999. The servlet expert group, with James
Davidson as lead, delivered the Servlet 2.1 specification in January and the Servlet
2.2 specification in December, while the JSP group, with Larry Cable and
Eduardo Pelegri-Llopart as leads, delivered JSP 1.0 in June and JSP 1.1 in
December.

The year 2000 saw a lot of activity, with many implementations of containers,
tools, books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Platform,
Enterprise Edition. Tag libraries were an area of intense development, as were
varying approaches to organizing all these features together. The adoption of JSP
technology has continued in the year 2001, with many talks at the “Web, Services
and beyond” track at JavaOne being dedicated to the technology.

The JSP 1.2 specification went final in 2001. JSP 1.2 provided a number of
fine-tunings of the spec. It also added the ability for validating JSP pages through
the XML views of a JSP page. JSP 1.2 also introduced a normative XML syntax
for JSP pages, but its adoption was handicaped by several specification
shortcomings.

JSP 2.0 brought a major revision of the JSP language. Key new features
included the simple Expression Language (EL), tag files, substantial
simplifications for writing tag handlers in Java and the notion of JSP fragments.
JSP 2.0 also included a revision of the XML syntax that addresses most of the
problems in JSP 1.2.

The primary goal of JSP 2.1 is to unify the Expression Language used by JSP
and JSF pages. The Expression language is therefore defined in its own
specification document making it clear that it has general applicability and does
not carry a dependency on any specific technology.

Tracking the industry in a printed document is at best difficult; the industry
pages at the web site at http://java.sun.com/products/jsp do a better job.

Acknowledgments for JSP 2.1

Many thanks to all the individuals who have contributed to this version of the
specification.

We want to thank members of the Expert Group: Shawn Bayern, Hans
Bergsten, Paul Bonfanti (New Atlanta Communications), Elaine Chien, Kin-Man
Chung, Bill Dudney, Satish Duggana (Pramati Technologies), Jayson Falkner,
Kjeld Froberg (Trifork Technologies), Sumathi Gopalakrishnan (Oracle),
Geoffrey Greene (Macromedia), Randal Hanford (Boeing), Andy Hedges (Cap
Gemini), Larry Isaacs (SA Institute), Scott Johnson (IBM), Kevin Jones
(DevelopMentor), Vishy Kasar (Borland), Serge Knystautas (Apache Software

xxviii

JavaServer Pages 2.1 Specification

Foundation), Changshin Lee (Tmax Soft), Felipe Leme, Kito Mann, Eddie O'Neil
(BEA), John Rousseau (Novell), Kris Schneider, Nicholas Shulman (BEA), Sue
Spielman, Hani Suleiman (Ironflare AB), Srinagesh Susarla (BEA),
Sivasundaram Umapathy, Ana von Klopp.

Special mention is due to Hani Suleiman, Felipe Leme, Scott Johnson, and
Sumathi Gopalakrishnan for their overall active participation to the expert group
discussions.

The editors also want to give special thanks to the individuals within the Java
Enterprise Edition platform team at Sun Microsystems, and especially to Bill
Shannon, Eduardo Pellegri-Llopart, Jim Driscoll, Karen Schaffer, Kin-Man
Chung, Nick Rodin, Sheri Shen, Jean-Francois Arcand, Jennifer Ball, Tony Ng,
Ed Burns, Jayashri Visvanathan, Roger Kitain, Ryan Lubke, Dhiru Pandey, Greg
Murray, and Norbert Lindenberg.

Acknowledgments for JSP 2.0

Many people contributed to the JavaServer Pages specifications. The success
of the Java Platform depends on the Java Community Process used to define and
evolve it. This process, which involves many individuals and corporations,
promotes the development of high quality specifications in Internet time.

Although it is impossible to list all the individuals who have contributed to
this version of the specification, we would like to give thanks to all the members
in our expert group. We have the benefit of a very large, active and enthusiastic
expert group, without which the JSP specifications would not have succeeded.

We want to thank:
Nathan Abramson (Individual), Tim Ampe (Persistence Software Inc.),

Shawn Bayern (Individual), Hans Bergsten (Individual), Paul Bonfanti (New
Atlanta Communications Inc.), Prasad BV (Pramati Technologies), Bjorn Carlson
(America Online), Murthy Chintalapati (Sun Microsystems, Inc.), Kin-Man
Chung (Sun Microsystems, Inc.), Bill de hOra (InterX PLC), Ciaran Dynes
(IONA Technologies PLC), Jayson Falkner (Individual), James Goodwill
(Individual), Kouros Gorgani (Sybase), Randal Hanford (Boeing), Larry Isaacs
(SAS Institute Inc.), Kevin R. Jones (Developmentor), Francois Jouaux (Apple
Computer Inc.), Vishy Kasar (Borland Software Corporation), Ana Von Klopp
(Sun Microsystems, Inc.), Matt LaMantia (Art Technology Group, Inc.), Bart
Leeten (EDS), Geir Magnusson Jr. (Apache Software Foundation), Jason McGee
(IBM), Brian McKellar (SAP AG), Shawn McMurdo (Lutris Technologies),
Charles Morehead (Art Technology Group Inc.), Lars Oleson (SeeBeyond
Technology Corp.), Jeff Plager (Sybase), Boris Pruessmann (Adobe Systems,

xxix

JavaServer Pages 2.1 Specification

Inc.), Tom Reilly (Macromedia, Inc.), Ricardo Rocha (Apache Software
Foundation), John Rousseau (Novell, Inc.), James Strachan (Individual),
Srinagesh Susarla (BEA Systems), Alex Yiu (Oracle).

We want to thank the community that implemented the reference
implementation, and the vendors that have implemented the spec, the authoring
tools, and the tag libraries.

Special mention is due to: Hans Bergsten for his numerous thorough reviews
and technical accuracy, Shawn Bayern for his tireless help with the EL and RI,
Alex Yiu for his thorough analysis on the invocation protocol and I18N, Nathan
Abramson for his in-depth technical expertise and ideas, Norbert Lindenberg for
his overhaul of the I18N chapter, Jan Luehe and Kin-Man Chung for keeping the
RI more than up-to-date with the specification allowing for real-time feedback,
Ana von Klopp for her help with JSR-45 debugging and keeping the tools
perspective fresh in our minds, and Umit Yalcinalp for her conversion of the TLD
and deployment descriptors into XML Schema.

We want to thank all the authors of books on JSP technology, and the creators
of the web sites that are tracking and facilitating the creation of the JSP
community.

The editors want to give special thanks to many individuals within the Java 2
Enterprise Edition team, and especially to Jean-Francois Arcand, Jennifer Ball,
Stephanie Bodoff, Pierre Delisle, Jim Driscoll, Cheng Fang, Robert Field, Justyna
Horwat, Dianne Jiao, Norbert Lindenberg, Ryan Lubke, Jan Luehe, Craig
McClanahan, Bill Shannon, Prasad Subramanian, Norman Walsh, Yutaka
Yoshida, Kathleen Zelony, and to Ian Evans for his editorial work.

Lastly, but most importantly, we thank the software developers, web authors
and members of the general public who have read this specification, used the
reference implementation, and shared their experience. You are the reason the
JavaServer Pages technology exists!

xxx

JavaServer Pages 2.1 Specification

xxxiJavaServer Pages 2.1 Specification

Overview

This is an overview of the JavaServer Pages technology.

The JavaServer Pages™ Technology

JavaServer™ Pages (JSP) is the Java™ Platform, Enterprise Edition (Java EE)
technology for building applications for generating dynamic web content, such as
HTML, DHTML, XHTML, and XML. JSP technology enables the easy authoring
of web pages that create dynamic content with maximum power and flexibility.

General Concepts

JSP technology provides the means for textual specification of the creation of a
dynamic response to a request. The technology builds on the following concepts:

• Template Data

A substantial portion of most dynamic content is fixed or template content.
Text or XML fragments are typical template data. JSP technology supports
natural manipulation of template data.

• Addition of Dynamic Data

JSP technology provides a simple, yet powerful, way to add dynamic data to
template data.

• Encapsulation of Functionality

JSP technology provides two related mechanisms for the encapsulation of
functionality: JavaBeans™ component architecture, and tag libraries deliver-

xxxii

JavaServer Pages 2.1 Specification

ing custom actions, functions, listener classes, and validation.

• Good Tool Support

Good tool support leads to significantly improved productivity. Accordingly,
JSP technology has features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-
side technology.

Benefits of JavaServer Pages Technology

JSP technology offers the following benefits:

• Write Once, Run Anywhere™ properties

JSP technology is platform independent in its dynamic web pages, its web
servers, and its underlying server components. JSP pages may be authored on
any platform, run on any web server or web enabled application server, and
accessed from any web browser. Server components can be built on any plat-
form and run on any server.

• High quality tool support

Platform independence allows the JSP user to choose best-of-breed tools.
Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

• Separation of Roles

JSP supports the separation of developer and author roles. Developers write
components that interact with server-side objects. Authors put static data and
dynamic content together to create presentations suited for their intended
audience.
Each group may do their job without knowing the job of the other. Each role
emphasizes different abilities and, although these abilities may be present in
the same individual, they most commonly will not be. Separation allows a
natural division of labor.
A subset of the developer community may be engaged in developing reusable
components intended to be used by authors.

• Reuse of components and tag libraries

JavaServer Pages technology emphasizes the use of reusable components

xxxiii

JavaServer Pages 2.1 Specification

such as JavaBeans components, Enterprise JavaBeans™ components, and tag
libraries. These components can be used with interactive tools for component
development and page composition, yielding considerable development time
savings. In addition, they provide the cross-platform power and flexibility of
the Java programming language or other scripting languages.

• Separation of dynamic and static content

JavaServer Pages technology enables the separation of static content in a tem-
plate from dynamic content that is inserted into the static template. This
greatly simplifies the creation of content. The separation is supported by
beans specifically designed for the interaction with server-side objects, and by
the tag extension mechanism.

• Support for actions, expressions, and scripting

JavaServer Pages technology supports scripting elements as well as actions.
Actions encapsulate useful functionality in a convenient form that can be
manipulated by tools. Expressions are used to access data. Scripts can be used
to glue together this functionality in a per-page manner.
The JSP 2.0 specification added a simple expression language (EL) to Java-
based scripts. Expressions in the EL directly express page author concepts
like properties in beans and provide more controlled access to the Web Appli-
cation data. Functions defined through the tag library mechanism can be
accessed in the EL.
The JSP 2.0 specification also added a mechanism by which page authors can
write actions using the JSP technology directly. This greatly increases the
ease with which action abstractions can be created.

• Web access layer for N-tier enterprise application architecture(s)

JavaServer Pages technology is an integral part of Java EE. The Java EE plat-
form brings Java technology to enterprise computing. One can now develop
powerful middle-tier server applications that include a web site using JavaSer-
ver Pages technology as a front end to Enterprise JavaBeans components in a
Java EE compliant environment.

Basic Concepts

This section introduces basic concepts that will be defined formally later in the
specification.

xxxiv

JavaServer Pages 2.1 Specification

What Is a JSP Page?

A JSP page is a text-based document that describes how to process a request to
create a response. The description intermixes template data with dynamic actions
and leverages the Java Platform. JSP technology supports a number of different par-
adigms for authoring dynamic content. The key features of JavaServer Pages are:

• Standard directives

• Standard actions

• Scripting elements

• Tag Extension mechanism

• Template content

Web Applications

The concept of a web application is inherited from the servlet specification. A
web application can be composed of:

• Java Runtime Environment(s) running on the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML, and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class
files

• Java Runtime Environment(s) running in client(s) (downloadable via the Plu-
gin and Java™ Web Start technology)

The JavaServer Pages specification inherits from the servlet specification the
concepts of web applications, ServletContexts, sessions, and requests and
responses. See the Java Servlet 2.5 specification for more details.

xxxv

JavaServer Pages 2.1 Specification

Components and Containers

JSP pages and servlet classes are collectively referred to as web components.
JSP pages are delivered to a container that provides the services indicated in the JSP
Component Contract.

The separation of components from containers allows the reuse of
components, with quality-of-service features provided by the container.

Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation
phase, and a request phase. Translation is done once per page. The request phase is
done once per request.

The JSP page is translated to create a servlet class, the JSP page
implementation class, that is instantiated at request time. The instantiated JSP
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application,
with a servlet class that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or
on-demand as the requests reach an untranslated JSP page.

Deployment Descriptor and Global Information

The JSP pages delivered in a web application may require some JSP configura-
tion information. This information is delivered through JSP-specific elements in the
web.xml deployment descriptor, rooted on the <jsp-config> element. Configuration
information includes <taglib> elements in mapping of tag libraries and <jsp-prop-

erty-group> elements used to provide properties of collections of JSP files. The
properties that can be indicated this way include page encoding information, EL
evaluation activation, automatic includes before and after pages, and whether script-
ing is enabled in a given page.

Role in the Java Platform, Enterprise Edition

With a few exceptions, integration of JSP pages within the Java EE 5.0 platform
is inherited from the Servlet 2.5 specification since translation turns JSPs into serv-
lets.

xxxvi

JavaServer Pages 2.1 Specification

Users of JavaServer Pages

There are six classes of users that interact with JavaServer Pages technology.
This section describes each class of user, enumerates the technologies each must be
familiar with, and identifies which sections of this specification are most relevant to
each user class. The intent is to ensure that JavaServer Pages remains a practical and
easy-to-use technology for each class of user, even as the language continues to
grow.

Page Authors

Page Authors are application component providers that use JavaServer Pages to
develop the presentation component of a web application. It is expected that they
will not make use of the scripting capabilities of JavaServer Pages, but rather limit
their use to standard and custom actions. Therefore, it is assumed that they know the
target language, such as HTML or XML, and basic XML concepts, but they need
not know Java at all.

The following sections are most relevant to this class of user:

• Chapter JSP.1, “Core Syntax and Semantics”, except for Section JSP.1.12,
“Scripting Elements” and Section JSP.1.14, “Tag Attribute Interpretation Se-
mantics”, which both talk about scripting.

• Chapter JSP.2, “Expression Language”

• Chapter JSP.3, “JSP Configuration”

• Chapter JSP.4, “Internationalization Issues”

• Chapter JSP.5, “Standard Actions”

• Chapter JSP.6, “JSP Documents”, except for sections that discuss declara-
tions, scriptlets, expressions, and request-time attributes.

• Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

• Chapter JSP.8, “Tag Files”.

• Appendices Appendix JSP.A, “Packaging JSP Pages”, Appendix JSP.E,
“Changes”, and Appendix JSP.F, “Glossary”.

xxxvii

JavaServer Pages 2.1 Specification

Advanced Page Authors

Like Page Authors, Advanced Page Authors are also application component
providers that use JavaServer Pages to develop the presentation component of a web
application. These authors have a better understanding of XML and also know Java.
Though they are recommended to avoid it where possible, these authors do have
scripting at their disposal and should be able to read and understand JSPs that make
use of scripting.

The following sections are most relevant to this class of user:

• Chapters Chapter JSP.1, “Core Syntax and Semantics”, Chapter JSP.2, “Ex-
pression Language”, Chapter JSP.3, “JSP Configuration”, Chapter JSP.4, “In-
ternationalization Issues” and Chapter JSP.5, “Standard Actions”.

• Chapter JSP.6, “JSP Documents”.

• Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved
Names” of Chapter JSP.9, “Scripting”.

• Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

• Chapter JSP.8, “Tag Files”

• Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”

• Chapter JSP.12, “Core API”

• Appendices Appendix JSP.A, “Packaging JSP Pages”, Appendix JSP.B, “JSP
Elements of web.xml”, Appendix JSP.E, “Changes”, and Appendix JSP.F,
“Glossary”.

Tag Library Developers

Tag Library Developers are application component providers who write tag
libraries that provide increased functionality to Page Authors and Advanced Page
Authors. They have an advanced understanding of the target language, XML, and
Java.

The following sections are most relevant to this class of user:

• Chapters Chapter JSP.1, “Core Syntax and Semantics”, Chapter JSP.2, “Ex-
pression Language”, Chapter JSP.3, “JSP Configuration”, Chapter JSP.4, “In-
ternationalization Issues” and Chapter JSP.5, “Standard Actions”.

• Chapter JSP.6, “JSP Documents”.

xxxviii

JavaServer Pages 2.1 Specification

• Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved
Names” of Chapter JSP.9, “Scripting”.

• Chapter JSP.7, “Tag Extensions”

• Chapter JSP.8, “Tag Files”

• Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”

• Chapter JSP.12, “Core API” and Chapter JSP.13, “Tag Extension API”

• All Appendices.

Deployers

A deployer is an expert in a specific operational environment who is responsible
for configuring a web application for, and deploying the web application to, that
environment. The deployer does not need to understand the target language or Java,
but must have an understanding of XML or use tools that provide the ability to read
deployment descriptors.

The following sections are most relevant to this class of user:

• Section JSP.1.1, “What Is a JSP Page” and Section JSP.1.2, “Web Applica-
tions” of Chapter JSP.1, “Core Syntax and Semantics”

• Chapter JSP.3, “JSP Configuration”

• Chapter JSP.4, “Internationalization Issues”

• Chapter JSP.11, “JSP Container”

• All Appendices.

Container Developers and Tool Vendors

Container Developers develop containers that host JavaServer Pages. Tool Ven-
dors write development tools to assist Page Authors, Advanced Page Authors, Tag
Library Developers, and Deployers. Both Container Developers and Tool Vendors
must know XML and Java, and must know all the requirements and technical details
of JavaServer Pages. Therefore, this entire specification is relevant to both classes of
user.

1-1JavaServer Pages 2.1 Specification

Part I

The next chapters form the core of the JSP specification. These chapters pro-
vide information for Page authors, Tag Library developers, deployers and Container
and Tool vendors.

The chapters of this part are:

• Core Syntax and Semantics

• Expression Language

• Configuration Information

• Internationalization Issues

• Standard Actions

• JSP Documents

• Tag Extensions

• Tag Files

• Scripting

• XML Views

1-2

JavaServer Pages 2.1 Specification

1-3JavaServer Pages 2.1 Specification

C H A P T E R JSP.1
Core Syntax and Semantics

This chapter describes the core syntax and semantics for the JavaServer Pages
2.1 specification (JSP 2.1).

JSP.1.1 What Is a JSP Page

A JSP page is a textual document that describes how to create a response object
from a request object for a given protocol. The processing of the JSP page may
involve creating and/or using other objects.

A JSP page defines a JSP page implementation class that implements the
semantics of the JSP page. This class implements the javax.servlet.Servlet

interface (see Chapter JSP.11, “JSP Container” for details). At request time a
request intended for the JSP page is delivered to the JSP page implementation
object for processing.

HTTP is the default protocol for requests and responses. Additional request/
response protocols may be supported by JSP containers. The default request and
response objects are of type HttpServletRequest and HttpServletResponse

respectively.

JSP.1.1.1 Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management
and runtime support for JSP pages and servlet components. Requests sent to a JSP
page are delivered by the JSP container to the appropriate JSP page implementation
object. The term web container is synonymous with JSP container.

A web component is either a servlet or a JSP page. The servlet element in a
web.xml deployment descriptor is used to describe both types of web components.
JSP page components are defined implicitly in the deployment descriptor through

CORE SYNTAX AND SEMANTICS1-4

JavaServer Pages 2.1 Specification

the use of an implicit .jsp extension mapping, or explicitly through the use of a
jsp-group element.

JSP.1.1.2 Generating HTML

A traditional application domain of the JSP technology is HTML content. The
JSP specification supports well this use through a syntax that is friendly to HTML
and XML although it is not HTML-specific; for instance, HTML comments are
treated no differently than other HTML content. The JSP Standard Tag Library has
specific support for HTML though some specific custom actions.

JSP.1.1.3 Generating XML

An increasingly important application domain for JSP technology is dynamic
XML content using formats like XHTML, SVG and the Open Office format, and in
applications like content publishing, data representation and Web Services. The
basic JSP machinery (JSP syntax) can be used to generate XML content, but it is
also possible to tag a JSP page as a JSP document and get additional benefits.

A JSP document is an XML document; this means that a JSP document is a
well-formed, structured document and that this will be validated by the JSP
container. Additionally, this structure will be available to the JSP validation
machinery, the TagLibraryValidators. A JSP document is a namespace-aware
XML document, with namespaces reflecting the structure of both content and
custom actions and with some additional care, a JSP page can reflect quite
accurately the structure of the resulting content. A JSP document can also use
machinery like entity definitions.

The JSP 1.2 specification made a stronger distinction between JSP documents
and non-XML JSP pages. For instance standard actions like <jsp:expression>
were only available in JSP documents. The difference proved to be confusing and
distracting and the distinction has been relaxed in JSP 2.0 to facilitate the
transition from the JSP syntax to XML syntax.

JSP.1.1.4 Translation and Execution Phases

A JSP container manages two phases of a JSP page’s lifecycle. In the transla-
tion phase, the container validates the syntactic correctness of the JSP pages and tag
files and determines a JSP page implementation class that corresponds to the JSP
page. In the execution phase the container manages one or more instances of this
class in response to requests and other events.

What Is a JSP Page 1-5

JavaServer Pages 2.1 Specification

During the translation phase the container locates or creates the JSP page
implementation class that corresponds to a given JSP page. This process is
determined by the semantics of the JSP page. The container interprets the standard
directives and actions, and the custom actions referencing tag libraries used in the
page. A tag library may optionally provide a validation method acting on the
XML View of a JSP page, see below, to validate that a JSP page is correctly using
the library.

A JSP container has flexibility in the details of the JSP page implementation
class that can be used to address quality-of-service--most notably performance--
issues.

During the execution phase the JSP container delivers events to the JSP page
implementation object. The container is responsible for instantiating request and
response objects and invoking the appropriate JSP page implementation object.
Upon completion of processing, the response object is received by the container
for communication to the client. The details of the contract between the JSP page
implementation class and the JSP container are described in Chapter JSP.11, “JSP
Container”.

The translation of a JSP source page into its implementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.
Section JSP.1.1.9 describes how to perform the translation phase ahead of
deployment.

JSP.1.1.5 Validating JSP pages

All JSP pages, regardless of whether they are written in the traditional JSP syn-
tax or the XML syntax of JSP documents have an equivalent XML document, the
XML view of a JSP page, that is presented to tag library validators in the translation
phase for validation.

The structure of the custom actions in a JSP page is always exposed in the
XML view. This means that a tag library validator can check that, for instance,
some custom actions are only used within others.

The structure of the content used in a JSP page is exposed in greater or lesser
detail depending on whether the XML syntax or the traditional JSP syntax is used.
When using XML syntax a tag library validator can use that extra structure to, for
example, check that some actions are only used with some content, or within
some content, and, using knowledge of the semantics of the custom actions, make
assertions on the generated dynamic content.

CORE SYNTAX AND SEMANTICS1-6

JavaServer Pages 2.1 Specification

JSP.1.1.6 Events in JSP Pages

A JSP page may indicate how some events are to be handled.
As of JSP 1.2 only init and destroy events can be described in the JSP page.

When the first request is delivered to a JSP page, a jspInit() method, if present, will
be called to prepare the page. Similarly, a JSP container invokes a JSP’s jspDe-

stroy() method to reclaim the resources used by the JSP page at any time when a
request is not being serviced. This is the same life-cycle as for servlets.

JSP.1.1.7 JSP Configuration Information

JSP pages may be extended with configuration information that is delivered in
the JSP configuration portion of the web.xml deployment description of the web
application. The JSP configuration information includes interpretation for the tag
libraries used in the JSP files and different property information for groups of JSP
files. The property information includes: page encoding information, whether the
EL evaluation and the scripting machinery is enabled, and prelude and coda auto-
matic inclusions. The JSP configuration information can also be used to indicate that
some resources in the web application are JSP files even if they do not conform to
the default .jsp extension, and to modify the default interpretation for .jspx.

JSP.1.1.8 Naming Conventions for JSP Files

A JSP page is packaged as one or more JSP files, often in a web application, and
delivered to a tool like a JSP container, a Java EE container, or an IDE. A complete
JSP page may be contained in a single file. In other cases, the top file will include
other files that contain complete JSP pages, or included segments of pages.

It is common for tools to need to differentiate JSP files from other files. In
some cases, the tools also need to differentiate between top JSP files and included
segments. For example, a segment may not be a legal JSP page and may not
compile properly. Determining the type of file is also very useful from a
documentation and maintenance point of view, as people familiar with the .c and
.h convention in the C language know.

By default the extension .jsp means a top-level JSP file. We recommend, but
do not mandate, to differentiate between top-level JSP files (invoked directly by
the client or dynamically included by another page or servlet) and statically
included segments so that:

What Is a JSP Page 1-7

JavaServer Pages 2.1 Specification

• The .jsp extension is used only for files corresponding to top level JSP files,
forming a JSP page when processed.

• Statically included segments use any other extension. As included segments
were called ‘JSP fragments’ in past versions of this specification, the extension
.jspf was offered as a suggestion. This extension is still suggested for consis-
tency reasons, despite that they are now called ‘jsp segments’.

JSP documents, that is, JSP pages that are delivered as XML documents, use
the extension .jspx by default.

The jsp-property-group element of web.xml can be used to indicate that some
group of files, perhaps not using either of the extensions above, are JSP pages, and
can also be used to indicate which ones are delivered as XML documents.

JSP.1.1.9 Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment
information during development (a JSP page can also be compiled at deployment
time). In this way JSP page authoring tools and JSP tag libraries may be used for
authoring servlets. The benefits of this approach include:

• Removal of the start-up lag that occurs when a container must translate a JSP
page upon receipt of the first request.

• Reduction of the footprint needed to run a JSP container, as the Java compiler
is not needed.

Compilation of a JSP page in the context of a web application provides
resolution of relative URL specifications in include directives and elsewhere, tag
library references, and translation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

JSP.1.1.9.1 JSP Page Packaging

When a JSP page implementation class depends on support classes in addition
to the JSP 2.1 and Servlet 2.5 classes, the support classes are included in the pack-
aged WAR, as defined in the Servlet 2.5 specification, for portability across JSP con-
tainers.

Appendix , “Packaging JSP Pages contains two examples of JSP pages
packaged in WARs:

CORE SYNTAX AND SEMANTICS1-8

JavaServer Pages 2.1 Specification

1. A JSP page delivered in source form (the most common case).

2. A JSP page translated into an implementation class plus deployment informa-
tion. The deployment information indicates support classes needed and the
mapping between the original URL path to the JSP page and the URL for the
JSP page implementation class for that page.

JSP.1.1.10 Debugging JSP Pages

In the past debugging tools provided by development environments have lacked
a standard format for conveying source map information allowing the debugger of
one vendor to be used with the JSP container of another. As of JSP 2.0, containers
must support JSR-045 (“Debugging Support for Other Languages”). Details can be
found in Section JSP.11.5, “Debugging Requirements”.

JSP.1.2 Web Applications

A web application is a collection of resources that are available at designated
URLs. A web application is made up of some of the following:

• Java runtime environment(s) running in the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Resource files used by Java classes.

• Client-side Java Applets, JavaBeans components, and Java class files

• Java runtime environment(s) (downloadable via the Plugin and Java Web
Start) running in client(s)

Web applications are described in more detail in the Servlet 2.5 specification.
A web application contains a deployment descriptor web.xml that contains

information about the JSP pages, servlets, and other resources used in the web
application. The deployment descriptor is described in detail in the Servlet 2.5
specification.

Web Applications 1-9

JavaServer Pages 2.1 Specification

JSP 2.1 requires that these resources be implicitly associated with and
accessible through a unique ServletContext instance available as the implicit appli-

cation object (see Section JSP.1.8).
The application to which a JSP page belongs is reflected in the application

object, and has impact on the semantics of the following elements:

• The include directive (see Section JSP.1.10.3).

• The taglib directive (see Section JSP.1.10.2).

• The jsp:include action element (see Section JSP.5.4, “<jsp:include>”).

• The jsp:forward action (see Section JSP.5.5, “<jsp:forward>”).

JSP 2.1 supports portable packaging and deployment of web applications
through the Servlet 2.5 specification. The JavaServer Pages specification inherits
from the servlet specification the concepts of applications, ServletContexts,
Sessions, Requests and Responses.

JSP.1.2.1 Relative URL Specifications

Elements may use relative URL specifications, called URI paths, in the Servlet
2.5 specification. These paths are as described in RFC 2396. We refer to the path
part of that specification, not the scheme, nor authority parts. Some examples are:

• A context-relative path is a path that starts with a slash (/). It is to be interpreted
as relative to the application to which the JSP page or tag file belongs. That is,
its ServletContext object provides the base context URL.

• A page relative path is a path that does not start with a slash (/). It is to be in-
terpreted as relative to the current JSP page, or the current JSP file or tag file,
depending on where the path is being used. For an include directive (see
Section JSP.1.10.3) where the path is used in a file attribute, the interpretation
is relative to the JSP file or tag file. For a jsp:include action (see
Section JSP.5.4, “<jsp:include>”) where the path is used in a page attribute,
the interpretation is relative to the JSP page. In both cases the current page or
file is denoted by some path starting with / that is then modified by the new
specification to produce a path starting with /. The new path is interpreted
through the ServletContext object. See Section JSP.1.10.5 for exact details on
this interpretation.

CORE SYNTAX AND SEMANTICS1-10

JavaServer Pages 2.1 Specification

The JSP specification uniformly interprets paths in the context of the web
container where the JSP page is deployed. The specification goes through a
mapping translation. The semantics outlined here apply to the translation-time
phase, and to the request-time phase.

JSP.1.3 Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

JSP.1.3.1 Elements and Template Data

A JSP page has elements and template data. An element is an instance of an ele-
ment type known to the JSP container. Template data is everything else; that is, any-
thing that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element
has attributes, the type describes the attribute names, their valid types, and their
interpretation. If the element defines objects, the semantics includes what objects
it defines and their types.

JSP.1.3.2 Element Syntax

There are three types of elements: directive elements, scripting elements, and
action elements.

Directives

Directives provide global information that is conceptually valid independent
of any specific request received by the JSP page. They provide information for
the translation phase.
Directive elements have a syntax of the form <%@ directive...%>.

Actions

Actions provide information for the request processing phase. The interpreta-
tion of an action may, and often will, depend on the details of the specific
request received by the JSP page. An Actions can either be standard (that is.
defined in this specification), or custom (that is, provided via the portable tag
extension mechanism).
Action elements follow the syntax of an XML element. They have a start tag
including the element name, and may have attributes, an optional body, and a

Syntactic Elements of a JSP Page 1-11

JavaServer Pages 2.1 Specification

matching end tag, or may be an empty tag, possibly with attributes:

<mytag attr1=”attribute value”...>body</mytag>

And:

<mytag attr1=”attribute value”.../>
<mytag attr1=”attribute value” ...></mytag>

An element has an element type describing its tag name, its valid attributes
and its semantics. We refer to the type by its tag name.
JSP tags are case-sensitive, as in XML and XHTML.
An action may create objects and may make them available to the scripting
elements through scripting-specific variables.

Scripting Elements

Scripting elements provide “glue” around template text and actions.

The Expression Language (EL) can be used to simplify accessing data from
different sources. EL expressions can be used in JSP standard and custom
actions and template data. EL expressions use the syntax ${expr} and #{expr};
For example:

<mytag attr1=”${bean.property}”.../>
${map[entry]}
<lib:myAction>${3+counter}</lib:myAction>

Chapter JSP.2, “Expression Language” provides more details on the EL.

There are three language-based types of scripting elements: declarations,
scriptlets, and expressions. Declarations follow the syntax <%! ... %>. Script-
lets follow the syntax <% ... %>. Expressions follow the syntax <%= ... %>.

JSP.1.3.3 Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start
and end in the same file. The start tag cannot be on one file while the end tag is in
another.

The same rule applies to elements in the alternate syntax. For example, a
scriptlet has the syntax <% scriptlet %>. Both the opening <% characters and the
closing %> characters must be in the same physical file.

CORE SYNTAX AND SEMANTICS1-12

JavaServer Pages 2.1 Specification

A scripting language may also impose constraints on the placement of start
and end tags relative to specific scripting constructs. For example, Chapter JSP.9,
“Scripting” shows that Java language blocks cannot separate a start and an end
tag. See Section JSP.9.4, “Main Section” for details.

JSP.1.3.4 Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag

As examples, the following are all empty tags:

<x:foo></x:foo>
<x:foo />
<x:foo/>
<x:foo><%-- any comment --%></x:foo>

While the following are all non-empty tags:

<foo> </foo>
<foo><%= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>
<foo><!-- a comment --></foo>

JSP.1.3.5 Attribute Values

Following the XML specification, attribute values always appear quoted. Either
single or double quotes can be used to reduce the need for escaping quotes; the quo-
tation conventions available are described in Section JSP.1.6. There are two types of
attribute values, literals and request-time expressions (Section JSP.1.14.1), but the
quotation rules are the same.

JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements

Until JSP 2.0, tag handlers could be passed input two ways: through attribute
values and through the element body. Attribute values were always evaluated once
(if they were specified as an expression) and the result was passed to the tag
handler. The body could contain scripting elements and action elements and be
evaluated zero or more times on demand by the tag handler.

As of JSP 2.0, page authors can provide input in new ways using the
<jsp:attribute> standard action element. Based on the configuration of the action

Syntactic Elements of a JSP Page 1-13

JavaServer Pages 2.1 Specification

being invoked, the body of the element either specifies a value that is evaluated
once, or it specifies a “JSP fragment,” which represents the body in a form that
makes it possible for a tag handler to evaluate it as many times as needed. The
<jsp:attribute> action must only be used to specify an attribute value for standard
or custom actions. A translation error must occur if it is used in any other context,
for example to specify the value of template text that looks like an XML element.

It is illegal JSP syntax, which must result in a translation error, to use both an
XML element attribute and a <jsp:attribute> standard action to pass the value of
the same attribute. See Section JSP.5.10, “<jsp:attribute>” for more details on the
<jsp:attribute> standard action.

The following example uses an XML element attribute to define the value of
the param1 attribute, and uses an attribute standard action to define the value of
the param2 attribute. In this example, the value of param2 comes from the result
of a custom action invocation.

<mytag:paramTag param1=”value1”>
<jsp:attribute name=”param2”>

<mymath:add x=”2” y=”2”/>
</jsp:attribute>

</mytag:paramTag>

If a page author wishes to pass both an attribute standard action and a tag
body, the <jsp:body> standard action must be used to specify the body. A
translation error will result if the custom action invocation has <jsp:attribute>

elements but does not define the body using a <jsp:body> element. See
Section JSP.5.11, “<jsp:body>” for more details on the <jsp:body> standard
action.

The following example shows two equivalent tag invocations to the
hypothetical <mytag:formatBody> custom action. The first invocation uses an
XML element attribute to pass the values of the color and size attributes. The
second example uses an attribute standard action to pass the value of the color

attribute. Both examples have tag body containing simply the words “Template
Text”.

<mytag:tagWithBody color=”blue” size=”12”>
Template Text

</mytag:tagWithBody>

CORE SYNTAX AND SEMANTICS1-14

JavaServer Pages 2.1 Specification

<mytag:tagWithBody size=”12”>
<jsp:attribute name=”color”>blue</jsp:attribute>
<jsp:body>

Template Text
</jsp:body>

</mytag:tagWithBody>

<jsp:attribute> can be used with the <jsp:element> standard action to generate
dynamic content in a well structured way. The example below generates an
HTML head of some type unknown at page authoring time:

<jsp:element name=”H${headLevel}”>
<jsp:attribute name=”size”>${headSize}</jsp:attribute>
<jsp:body>${headText}<jsp:body>

</jsp:element>

JSP.1.3.7 Valid Names for Actions and Attributes

The names for actions must follow the XML convention (i.e. must be an NMTO-

KEN as indicated in the XML 1.0 specification). The names for attributes must fol-
low the conventions described in the JavaBeans specification.

Attribute names that start with jsp, _jsp, java, or sun are reserved in this
specification.

JSP.1.3.8 White Space

In HTML and XML white space is usually not significant, but there are excep-
tions. For example, an XML file may start with the characters <?xml, and, when it
does, it must do so with no leading whitespace characters.

This specification follows the whitespace behavior defined for XML. White
space within the body text of a document is not significant, but is preserved. This
default behavior can be modified for JSP pages in standard syntax as described in
Section JSP.3.3.8, “Removing whitespaces from template text”.

Next are two examples of JSP code with their associated output. Note that
directives generate no data and apply globally to the JSP page.

Table JSP.1-1 Example 1 - Input

LineNo Source Text

1 <?xml version=”1.0” ?>

2 <%@ page buffer=”8kb” %>

3 The rest of the document goes here

Syntactic Elements of a JSP Page 1-15

JavaServer Pages 2.1 Specification

The result is

The next two tables show another example, with input and output.,

The result is

As of JSP 2.1, it is possible to have extraneous whitespaces removed from
template text through element trim-directive-whitespaces of JSP Property Groups
(See Section JSP.3.3.8, “Removing whitespaces from template text”), or the page
and tag file directive attribute trimDirectiveWhitespaces (See Section JSP.1.10.1,
“The page Directive”, Section JSP.8.5.1, “The tag Directive”).

JSP.1.3.9 JSP Documents

A JSP page is usually passed directly to a JSP container. A JSP Document is a
JSP page that is also an XML document. When a JSP document is encountered by
the JSP container, it is interpreted as an XML document first and after that as a JSP
page. Among the consequences of this are:

Table JSP.1-2 Example 1 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2
3 The rest of the document goes here

Table JSP.1-3 Example 2 - Input

LineNo Source Text

1 <% response.setContentType(“....”);

2 whatever... %><?xml version=”1.0” ?>

3 <%@ page buffer=”8kb” %>

4 The rest of the document goes here

Table JSP.1-4 Example 2 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2
3 The rest of the document goes here

CORE SYNTAX AND SEMANTICS1-16

JavaServer Pages 2.1 Specification

• The document must be well-formed

• Validation, if indicated

• Entity resolution will apply, if indicated

• <% style syntax cannot be used

JSP documents are often a good match for the generation of dynamic XML
content as they can preserve much of the structure of the generated document.

The default convention for JSP documents is .jspx. There are configuration
elements that can be used to indicate that a specific file is a JSP document.

See Chapter JSP.6, “JSP Documents” for more details on JSP documents, and
Chapter JSP.3, “JSP Configuration” for more details on configuration.

JSP.1.3.10 JSP Syntax Grammar

This section presents a simple EBNF grammar for the JSP syntax. The grammar
is intended to provide a concise syntax overview and to resolve any syntax ambigu-
ities present in this specification. Other sections may apply further restrictions to this
syntax, for example to restrict what represents a valid attribute value for a page
directive. In all other cases the grammar takes precedence in resolving syntax ques-
tions.

The notation for this grammar is identical to that described by Chapter 6 of
the XML 1.0 specification, available at the following URL:

http://www.w3c.org/TR/2000/REC-xml-20001006#sec-notation

In addition, the following notes and rules apply:

• The root production for a JSP page is JSPPage.

• The prefix XML:: is used to refer to an EBNF definition in the XML 1.0 speci-
fication. Refer to http://www.w3.org/TR/REC-xml.

• Where applicable, to resolve grammar ambiguities, the first matching produc-
tion must always be followed. This is commonly known as the “greedy” algo-
rithm.

• If the <TRANSLATION_ERROR> production is followed, the page is invalid,

and the result will be a translation error.

• Many productions make use of XML-style attributes. These attributes can ap-
pear in any order, separated from each other by whitespace, but no attribute
can be repeated more than once. To make these XML-style attribute specifica-

Syntactic Elements of a JSP Page 1-17

JavaServer Pages 2.1 Specification

tions more concise and easier to read, the syntax ATTR[attrset] is used in the
EBNF to define a set of XML attributes that are recognized in a particular pro-
duction.

Within the square brackets (attrset) is listed a comma-separated list of case-
sensitive attribute names that are valid. Each attribute name represents a sin-
gle XML attribute. If the attribute name is prefixed with an =, the production
Attribute (defined below) must be matched (either a rtexprvalue or a static
value is accepted). If not, the production NonRTAttribute must be matched
(only static values are accepted). If the attribute name is prefixed with a !, the
attribute is required and must appear in order for this production to be
matched. If an attribute that matches the Attribute production with a name not
listed appears adjacent to any of the other attributes, the production is not
matched.
For example, consider a production that contains ATTR[!name, =value,
=!repeat]. This production is matched if and only if all of the following hold
true:

• The name attribute appears exactly once and matches the NonRTAttribute
production.

• The value attribute appears at most once. If it appears, the Attribute produc-
tion must be matched.

• The repeat attribute appears exactly once and matches the Attribute produc-
tion.

• There must be no other attributes aside from name, value, or repeat.

For example, the following sample strings match the above:
• name=”somename” value=”somevalue” repeat=”2”
• repeat=”${ x + y }” name=”othername”

JSP.1.3.10.1 EBNF Grammar for JSP Syntax

JSPPage ::= Body

JSPTagDef ::= Body

Body ::= AllBody | ScriptlessBody
[vc: ScriptingEnabled]
[vc: ScriptlessBody]

CORE SYNTAX AND SEMANTICS1-18

JavaServer Pages 2.1 Specification

AllBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ DeclarationBody)
| (‘<jsp:declaration’ XMLDeclarationBody)
| (‘<%=’ ExpressionBody)
| (‘<jsp:expression’ XMLExpressionBody)
| (‘<%’ ScriptletBody)
| (‘<jsp:scriptlet’ XMLScriptletBody)
| (‘${‘ ELExpressionBody)
| (‘#{‘ ELExpressionBody)
| (‘<jsp:text’ XMLTemplateText)
| (‘<jsp:’ StandardAction)
| (‘</’ ExtraClosingTag)
| (‘<‘ CustomAction

CustomActionBody)
| TemplateText

)*

ScriptlessBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ <TRANSLATION_ERROR>)
| (‘<jsp:declaration’

<TRANSLATION_ERROR>)
| (‘<%=’ <TRANSLATION_ERROR>)
| (‘<jsp:expression’

<TRANSLATION_ERROR>)
| (‘<%’ <TRANSLATION_ERROR>)
| (‘<jsp:scriptlet’

<TRANSLATION_ERROR>)
| (‘${‘ ELExpressionBody)
| (‘#{‘ ELExpressionBody)
| (‘<jsp:text’ XMLTemplateText)
| (‘<jsp:’ StandardAction)
((‘</’ ExtraClosingTag)
| (‘<‘ CustomAction

CustomActionBody)
| TemplateText

)*
[vc: ELEnabled]

Syntactic Elements of a JSP Page 1-19

JavaServer Pages 2.1 Specification

TemplateTextBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ <TRANSLATION_ERROR>)
| (‘<jsp:declaration’

<TRANSLATION_ERROR>)
| (‘<%=’ <TRANSLATION_ERROR>)
| (‘<jsp:expression’

<TRANSLATION_ERROR>)
| (‘<%’ <TRANSLATION_ERROR>)
| (‘<jsp:scriptlet’

<TRANSLATION_ERROR>)
| (‘${‘ <TRANSLATION_ERROR>)
| (‘#{‘ <TRANSLATION_ERROR>)
| (‘<jsp:text’ <TRANSLATION_ERROR>)
| (‘<jsp:’ <TRANSLATION_ERROR>)
| (‘<‘ CustomAction

<TRANSLATION_ERROR>)
| TemplateText

)*
[vc: ELEnabled]

JSPCommentBody ::= (Char* - (Char* ‘--%>’)) ‘--%>’
| <TRANSLATION_ERROR>

DirectiveBody ::= JSPDirectiveBody | TagDefDirectiveBody
[vc: TagFileSpecificDirectives]

XMLDirectiveBody ::= XMLJSPDirectiveBody | XMLTagDefDirectiveBody
[vc: TagFileSpecificXMLDirectives]

JSPDirectiveBody ::= S?
((‘page’ S PageDirectiveAttrList)

| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)

)
S? ‘%>’

| <TRANSLATION_ERROR>

CORE SYNTAX AND SEMANTICS1-20

JavaServer Pages 2.1 Specification

XMLJSPDirectiveBody::= S?
((‘page’ S PageDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

| (‘include’ S IncludeDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
)

| <TRANSLATION_ERROR>

TagDefDirectiveBody::= S?
((‘tag’ S TagDirectiveAttrList)

| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)
| (‘attribute’ S AttributeDirectiveAttrList)
| (‘variable’ S VariableDirectiveAttrList)

)
S? ‘%>’

| <TRANSLATION_ERROR>

XMLTagDefDirectiveBody::= ((‘tag’ S TagDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
| (‘include’ S IncludeDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

| (‘attribute’ S AttributeDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
| (‘variable’ S VariableDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

)
| <TRANSLATION_ERROR>

PageDirectiveAttrList::= ATTR[language, extends, import, session,
buffer, autoFlush, isThreadSafe,
info, errorPage, isErrorPage,
contentType, pageEncoding,
isELIgnored]

[vc: PageDirectiveUniqueAttr]

Syntactic Elements of a JSP Page 1-21

JavaServer Pages 2.1 Specification

TagLibDirectiveAttrList::= ATTR[!uri, !prefix]
| ATTR[!tagdir, !prefix]
[vc: TagLibDirectiveUniquePrefix]

IncludeDirectiveAttrList::=ATTR[!file]

TagDirectiveAttrList ::= ATTR[display-name, body-content,
dynamic-attributes, small-icon, large-icon,
description, example, language,
import, pageEncoding, isELIgnored]

[vc: TagDirectiveUniqueAttr]

AttributeDirectiveAttrList::=ATTR[!name, required, fragment, rtexprvalue,
type, description]

[vc: UniqueAttributeName]

VariableDirectiveAttrList::= ATTR[!name-given, variable-class,
scope, declare, description]

| ATTR[!name-from-attribute, !alias,
variable-class,
scope, declare, description]

[vc: UniqueVariableName]

DeclarationBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>

XMLDeclarationBody::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<‘)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

ExpressionBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

XMLExpressionBody::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

CORE SYNTAX AND SEMANTICS1-22

JavaServer Pages 2.1 Specification

ELExpressionBody ::= ELExpression ‘}’
| <TRANSLATION_ERROR>

ELExpression ::= [See EL spec document, production Expression]

ScriptletBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>

XMLScriptletBody ::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

StandardAction ::= (‘useBean’ StdActionContent)
| (‘setProperty’ StdActionContent)
| (‘getProperty’ StdActionContent)
| (‘include’ StdActionContent)
| (‘forward’ StdActionContent)
| (‘plugin’ StdActionContent)
| (‘invoke’ StdActionContent)
| (‘doBody’ StdActionContent)
| (‘element’ StdActionContent)
| (‘output’ StdActionContent)
| <TRANSLATION_ERROR>
[vc: TagFileSpecificActions]

StdActionContent ::= Attributes StdActionBody
[vc: StdActionAttributesValid]

StdActionBody ::= EmptyBody
| OptionalBody
| ParamBody
| PluginBody
[vc: StdActionBodyMatch]

EmptyBody ::= ‘/>’
| (‘>’ ETag)
| (‘>’ S? ‘<jsp:attribute’ NamedAttributes ETag)

TagDependentActionBody ::= JspAttributeAndBody
| (‘>’ TagDependentBody ETag)

TagDependentBody ::= Char* - (Char* ETag)

Syntactic Elements of a JSP Page 1-23

JavaServer Pages 2.1 Specification

JspAttributeAndBody::= (‘>’ S? (‘<jsp:attribute’NamedAttributes)?
‘<jsp:body’
(JspBodyBody |<TRANSLATION_ERROR>)
S? ETag

)

ActionBody ::= JspAttributeAndBody
| (‘>’ Body ETag)

ScriptlessActionBody::= JspAttributeAndBody
| (‘>’ ScriptlessBody ETag)

OptionalBody ::= EmptyBody | ActionBody

ScriptlessOptionalBody::=EmptyBody | ScriptlessActionBody

TagDependentOptionalBody::= EmptyBody | TagDependentActionBody

ParamBody ::= EmptyBody
| (‘>’ S? (‘<jsp:attribute’ NamedAttributes)?

‘<jsp:body’
(JspBodyParam | <TRANSLATION_ERROR>)
S? ETag

)
| (S? ‘>’ Param* ETag)

PluginBody ::= EmptyBody
| (‘>’ S? (‘<jsp:attribute’ NamedAttributes)?

‘<jsp:body’
(JspBodyPluginTags

| <TRANSLATION_ERROR>
)
S? ETag

)
| (‘>’ S? PluginTags ETag)

NamedAttributes ::= AttributeBody S? (‘<jsp:attribute’ AttributeBody S?)*

AttributeBody ::= ATTR[!name, trim] S?
(‘/>’

| ‘></jsp:attribute>’
| ‘>’ AttributeBodyBody ‘</jsp:attribute>’
| <TRANSLATION_ERROR>

)

CORE SYNTAX AND SEMANTICS1-24

JavaServer Pages 2.1 Specification

AttributeBodyBody ::= AllBody
| ScriptlessBody
| TemplateTextBody
[vc: AttributeBodyMatch]

JspBodyBody ::= (S? JspBodyEmptyBody)
| (S? ‘>’ (JspBodyBodyContent - ‘’) ‘</jsp:body>’)

JspBodyBodyContent::= ScriptlessBody | Body | TagDependentBody
[vc: JspBodyBodyContent]

JspBodyEmptyBody ::= ‘/>’
| ‘></jsp:body>’
| <TRANSLATION_ERROR>

JspBodyParam ::= S? ‘>’ S? Param* ‘</jsp:body>’

JspBodyPluginTags ::= S? ‘>’ S? PluginTags ‘</jsp:body>’

PluginTags ::= (‘<jsp:params’ Params S?)?
(‘<jsp:fallback’ Fallback S?)?

Params ::= ‘>’ S?
((‘<jsp:body>’

((S? Param+ S? ‘</jsp:body>’)
| <TRANSLATION_ERROR>

)
)

| Param+
)
’</jsp:params>’

Syntactic Elements of a JSP Page 1-25

JavaServer Pages 2.1 Specification

Fallback ::= ’/>’
| (‘>’ S? ‘<jsp:body>’

((S?
(Char* - (Char* ‘</jsp:body>’))
‘</jsp:body>’ S?

)
| <TRANSLATION_ERROR>

)
‘</jsp:fallback>’

)
| (’>’

(Char* - (Char* ’</jsp:fallback>’))
’</jsp:fallback>’

)

Param ::= ’<jsp:param’ StdActionContent

Attributes ::= (S Attribute)* S?
[vc: UniqueAttSpec]

CustomAction ::= TagPrefix ’:’ CustomActionName
[vc: CustomActionMatchesAndValid]

TagPrefix ::= Name

CustomActionName ::= Name

CustomActionBody ::= (Attributes CustomActionEnd)
| <TRANSLATION_ERROR>

CustomActionEnd ::= CustomActionTagDependent
| CustomActionJSPContent
| CustomActionScriptlessContent

CustomActionTagDependent::= TagDependentOptionalBody
[vc: CustomActionTagDependentMatch]

CustomActionJSPContent::= OptionalBody
[vc: CustomActionJSPContentMatch]

CustomActionScriptlessContent::= ScriptlessOptionalBody
[vc: CustomActionScriptlessContentMatch]

CORE SYNTAX AND SEMANTICS1-26

JavaServer Pages 2.1 Specification

TemplateText ::= (‘<‘ | ‘${‘ | ‘#{‘)
| (TemplateChar* -

(TemplateChar* (‘<‘ | ‘${‘ | ‘#{‘)))

TemplateChar ::= ‘\$’
| ‘\#’
| ‘<\%’
| Char
[vc : QuotedDollarMatched]

XMLTemplateText ::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* (‘<’ | ‘${‘ | ‘#{‘)))
((‘${‘ ELExpressionBody)?

| (‘#{‘ ELExpressionBody)?
)
CDSect?

)* ETag
)

| <TRANSLATION_ERROR>
[vc: ELEnabled]

ExtraClosingTag ::= ETag
[vc: ExtraClosingTagMatch]

ETag ::= ‘</’ TagPrefix ‘:’ Name S? ‘>’
[vc: ETagMatch]

Attribute ::= Name Eq
((‘”<%=’ RTAttributeValueDouble)

| (“‘<%=” RTAttributeValueSingle)
| (‘”’ AttributeValueDouble)
| (“‘” AttributeValueSingle)

)

NonRTAttribute ::= Name Eq
((‘”’ AttributeValueDouble)

| (“‘” AttributeValueSingle)
)

AnyAttributeValue ::= AttributeValue | RTAttributeValue

AttributeValue ::= AttributeValueDouble | AttributeValueSingle

RTAttributeValue ::= RTAttributeValueDouble | RTAttributeValueSingle

Syntactic Elements of a JSP Page 1-27

JavaServer Pages 2.1 Specification

AttributeValueDouble::= (QuotedChar - ‘”’)*
(‘”’ | <TRANSLATION_ERROR>)

AttributeValueSingle ::= (QuotedChar - “‘”)*
(“‘” | <TRANSLATION_ERROR>)

RTAttributeValueDouble::= ((QuotedChar - ‘”’)* -
((QuotedChar - ’"’)* ’%>’)

)
(’%>"’ | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

RTAttributeValueSingle::= ((QuotedChar - “‘”)* -
((QuotedChar - “‘”)* ’%>’)

)
("%>’" | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

Name ::= XML::Name

Char ::= XML::Char

QuotedChar ::= ’'’
| ’"’
| ’\\’
| ‘\”’
| "\’"
| ‘\$’
| ‘\#’
| (‘${‘ ELExpressionBody)
| (‘#{‘ ELExpressionBody)
| Char
[vc: QuotedDollarMatched]

S ::= XML::S

Eq ::= XML::Eq

CDSect ::= XML::CDSect

CORE SYNTAX AND SEMANTICS1-28

JavaServer Pages 2.1 Specification

JSP.1.3.10.2 Validity Constraints

The following validity constraints are referenced in the above grammar using the syn-
tax [vc: ValidityConstraint], and must be followed:

• ScriptingEnabled - The ScriptlessBody production must be followed if scripting
is disabled for this translation unit. See the scripting-invalid JSP Configuration
element (Section JSP.3.3.3, “Disabling Scripting Elements”).

• ScriptlessBody - The AllBody production cannot be followed if one of our par-
ent nodes in the parse tree is a ScriptlessBody production. That is, once we
have followed the ScriptlessBody production, until that production is complete
we cannot choose the AllBody production.

• ELEnabled - The token ${ or #{ is not followed if expressions are disabled for
this translation unit. See the isELIgnored page and tag directive
(Section JSP.1.10.1 and Section JSP.8.5.1, “The tag Directive” respectively)
and the el-ignored JSP Configuration element (Section JSP.3.3.2, “Deactivat-
ing EL Evaluation”).

• TagFileSpecificDirectives - The JSPDirectiveBody production must be followed
if the root production is JSPPage (i.e. this is a JSP page). The TagDefDirec-

tiveBody production must be followed if the root production is JSPTagDef (i.e.
this is a tag file).

• TagFileSpecificXMLDirectives - The XMLJSPDirectiveBody production must be
followed if the root production is JSPPage (i.e. this is a JSP page). The XMLT-

agDefDirectiveBody production must be followed if the root production is
JSPTagDef (i.e. this is a tag file).

• PageDirectiveUniqueAttr - A translation error will result if there is more than
one occurrence of any attribute defined by this directive in a given translation
unit, and if the value of the attribute is different than the previous occurrence.
No translation error results if the value is identical to the previous occurrence.
In addition, the import and pageEncoding attributes are excluded from this
constraint (see Section JSP.1.10.1).

• TagLibDirectiveUniquePrefix - A translation error will result if the prefix At-

tributeValue has already previously been encountered as a potential TagPrefix

in this translation unit.

• TagDirectiveUniqueAttr - A translation error will result if the prefix of this tag
directive is already defined in the current scope, and if that prefix is bound to a
namespace other than that specified by the uri or tagdir attribute.

Syntactic Elements of a JSP Page 1-29

JavaServer Pages 2.1 Specification

• UniqueAttributeName - A translation error will result if there are two or more
attribute directives with the same value for the name attribute in the same
translation unit. A translation error will result if there is a variable directive
with a name-given attribute equal to the value of the name attribute of an at-

tribute directive in the same translation unit.

• UniqueVariableName - A translation error must occur if more than one variable

directive appears in the same translation unit with the same value for the
name-given attribute or the same value for the name-from-attribute attribute. A
translation error must occur if there is a variable directive with a name-given

attribute equal to the value of the name attribute of an attribute directive in the
same translation unit. A translation error must occur if there is a variable di-
rective with a name-from-attribute attribute whose value is not equal to the
name attribute of an attribute directive in the same translation unit that is also
of type java.lang.String, that is required and that is not an rtexprvalue. A trans-
lation error must occur if the value of the alias attribute is equal to the value of
a name-given attribute of a variable directive, or the value of the name attribute
of an attribute directive in the same translation unit.

• TagFileSpecificActions - The invoke and doBody standard actions are only
matched if the JSPTagDef production was followed (i.e. if this is a tag file in-
stead of a JSP page).

• RTAttributeScriptingEnabled - If the RTAttributeValueDouble or RTAttributeVal-

ueSingle productions are visited during parsing and scripting is disabled for
this page, a translation error must be produced. See the scripting-invalid JSP
Configuration element (Section JSP.3.3.3, “Disabling Scripting Elements”).

• ExpressionBodyContent - A translation error will result if the body content mi-
nus the closing delimiter (%>, or </jsp:expression>, depending on how the ex-
pression started) does not represent a well-formed expression in the scripting
language selected for the JSP page.

• StdActionAttributesValid - An attribute is considered “provided” for this stan-
dard action if either the Attribute production or the AttributeBody production is
followed in the context of the enclosing StandardAction production. A transla-
tion error will result if any of the following conditions is true:

■ The set of attributes “provided” for this standard action does not match one
of the valid attribute combinations specified in Table JSP.1-5.

■ The same attribute is “provided” more than once, as determined by the at-
tribute name.

CORE SYNTAX AND SEMANTICS1-30

JavaServer Pages 2.1 Specification

■ An attribute is “provided” using the AttributeBody production that does not
accept a request-time expression value, as indicated by the = prefix in Table
JSP.1-5.

• StdActionBodyMatch - The StdActionBody production will only be matched if
the production listed for this standard action in the “Body Production” column
in Table JSP.1-5 is followed.

• AttributeBodyMatch - The type of element being specified determines which
production is followed (see Section JSP.5.10, “<jsp:attribute>”for details):

■ If a custom action that specifies an attribute of type JspFragment, Scriptless-
Body must be followed.

■ If a standard or custom action that accepts a request-time expression value,
AllJspBody must be followed.

■ If a standard or custom action that does not accept a request-time expression
value, TemplateTextBody must be followed.

• JspBodyBodyContent - The ScriptlessBody production must be followed if the
body content for this tag is scriptless. The Body production must be followed
if the body content for this tag is JSP. The TagDependentBody production
must be followed if the body content for this tag is tagdependent.

• UniqueAttSpec - A translation error will result if the same attribute name ap-
pears more than once.

• CustomActionMatchesAndValid - Following the rules in Section JSP.7.3, “The
Tag Library Descriptor” for determining the relevant set of tags and tag librar-
ies, assume the following:

■ Let U be the URI indicated by the uri AttributeValue of the previously encoun-
tered TagLibDirectiveAttrList with prefix matching the TagPrefix for this poten-
tial custom action, or nil if no such TagLibDirectiveAttrList was encountered in
this translation unit.

■ If U is not nil, let L be the <taglib> element in the relevant TLD entry such that
L.uri is equal to U.

Then:
■ If, after being parsed, the CustomAction production is matched (not yet tak-

ing into account the following rules), TagPrefix is considered a potential Tag-
Prefix in this translation unit for the purposes of the
TagLibDirectiveUniquePrefix validity constraint.

■ The CustomAction production will not be matched if U is nil or if the TagPre-
fix does not match the prefix AttributeValue of a TagLibDirectiveAttrList previ-

Syntactic Elements of a JSP Page 1-31

JavaServer Pages 2.1 Specification

ously encountered in this translation unit.

■ Otherwise, if the CustomAction production is matched, a translation error
will result if there does not exist a <tag> element T in a relevant TLD such
that L.T.name is equal to CustomActionName.

• CustomActionTagDependentMatch - Assume the definition of L from the Cus-

tomActionMatchesAndValid validity constraint above. The CustomAction-

TagDependent production is not matched if there does not exist a <tag>

element T in a relevant TLD such that L.T.body-content contains the value
tagdependent.

• CustomActionJSPContentMatch - Assume the definition of L from the Custom-

ActionMatchesAndValid validity constraint above. The CustomActionJSPCon-

tent production is not matched if there exists a <tag> element T in a relevant
TLD such that L.T.body-content does not contain the value JSP.

• CustomActionScriptlessContentMatch - Assume the definition of L from the
CustomActionMatchesAndValid validity constraint above. The CustomAction-

ScriptlessContent production is not matched if there does not exist a <tag> el-
ement T in a relevant TLD such that L.T.body-content contains the value
scriptless.

• QuotedDollarMatch - The ‘\$’ or ‘\#’ token is only matched if EL is enabled
for this translation unit. See Section JSP.3.3.2, “Deactivating EL Evaluation”.

• ETagMatch - Assume the definition of U from the CustomActionMatchesAnd-

Valid validity constraint. If TagPrefix is not ‘jsp’ and U is nil, the ETag produc-
tion is not matched. Otherwise, the ETag production is matched and a
translation error will result if the prefix and name of this closing tag does not
match the prefix and name of the starting tag at the corresponding nesting lev-
el, or if there is no corresponding nesting level (i.e. too many closing tags).
This is similar to the way XML is defined, except that template text that looks
like a closing element with an unrecognized prefix is allowed in the body of a
custom or standard action. In the following example, assuming ‘my’ is a valid
prefix and ‘indent’ is a valid tag, the tag is considered template text, and
no translation error is produced:

<my:indent level=”2”>

</my:indent>

CORE SYNTAX AND SEMANTICS1-32

JavaServer Pages 2.1 Specification

The following example, however, would produce a translation error, assuming
‘my’ is a valid prefix and ‘indent’ is a valid tag, and regardless of whether
‘othertag’ is a valid tag or not.

<my:indent level=”2”>
</my:othertag>

</my:indent>

• ExtraClosingTagMatch - The ExtraClosingTag production is not matched if en-
countered within two or more nested Body productions (e.g. if encountered in-
side the body of a standard or custom action).

JSP.1.3.10.3 Standard Action Attributes

Table JSP.1-5 specifies, for each standard action element, the bodies and the
attribute combinations that are valid. The value in the “Body Production” column
specifies a production name that must be matched for the body of the standard
action to be considered valid. The value in the “Valid Attribute Combinations”
column uses the same syntax as the attrset notation described at the start of
Section JSP.1.3.10, and indicates which attributes can be provided. Note that for
some valid attribute combinations, there are differing body productions. The first
attribute combination to be matched selects the valid body production for this
standard action invocation.

Table JSP.1-5 Valid body content and attributes for Standard Actions

Element Body Production Valid Attribute Combinations

jsp:useBean OptionalBody
OptionalBody
OptionalBody
OptionalBody

(!id, scope, !class)
(!id, scope, !type)
(!id, scope, !class, !type)
(!id, scope, =!beanName, !type)

jsp:setProperty EmptyBody
EmptyBody

(!name, !property, param)
(!name, !property, =!value)

jsp:getProperty EmptyBody (!name, !property)

jsp:include ParamBody (=!page, flush)

jsp:forward ParamBody (=!page)

Error Handling 1-33

JavaServer Pages 2.1 Specification

JSP.1.4 Error Handling

Errors may occur at translation time or at request time. This section describes
how errors are treated by a compliant implementation.

JSP.1.4.1 Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implemen-
tation class by a JSP container can occur at any time between initial deployment of
the JSP page into the JSP container and the receipt and processing of a client request
for the target JSP page. If translation occurs prior to the receipt of a client request for
the target JSP page, error processing and notification is implementation dependent
and not covered by this specification. In all cases, fatal translation failures shall
result in the failure of subsequent client requests for the translation target with the
appropriate error specification: For HTTP protocols the error status code 500

(Server Error) is returned.

jsp:plugin PluginBody (!type, !code, !codebase, align,
archive, =height, hspace,
jreversion, name, vspace, title,
=width, nspluginurl, iepluginurl,
mayscript)

jsp:invoke EmptyBody
EmptyBody
EmptyBody

(!fragment, !var, scope)
(!fragment, !varReader, scope)
(!fragment)

jsp:doBody EmptyBody
EmptyBody
EmptyBody

(!var, scope)
(!varReader, scope)
()

jsp:element OptionalBody (=!name)

jsp:output EmptyBody
EmptyBody

(omit-xml-declaration)
(omit-xml-declaration,

!doctype-root-element,
!doctype-system, doctype-public)

jsp:param EmptyBody (!name, =!value)

Table JSP.1-5 Valid body content and attributes for Standard Actions

CORE SYNTAX AND SEMANTICS1-34

JavaServer Pages 2.1 Specification

JSP.1.4.2 Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of
the JSP page implementation class, or in some other code (Java or other implemen-
tation programming language) called from the body of the JSP page implementation
class. Runtime errors occurring are realized in the page implementation, using the
Java programming language exception mechanism to signal their occurrence to
caller(s) of the offending behavior1.

These exceptions may be caught and handled (as appropriate) in the body of
the JSP page implementation class.

Any uncaught exceptions thrown in the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the JSP page (or the implementation default behavior,
if none is specified).

Information about the error is passed as javax.servlet.ServletRequest attributes
to the error handler, with the same attributes as specified by the Servlet
specification. Names starting with the prefixes java and javax are reserved by the
different specifications of the Java platform. The javax.servlet prefix is reserved
and used by the servlet and JSP specifications.

JSP.1.4.3 Using JSPs as Error Pages

A JSP is considered an Error Page if it sets the page directive’s isErrorPage

attribute to true. If a page has isErrorPage set to true, then the “exception” implicit
scripting language variable (see Table JSP.1-7) of that page is initialized. The
variable is set to the value of the javax.servlet.error.exception request attribute
value if present, otherwise to the value of the javax.servlet.jsp.jspException request
attribute value (for backwards compatibility for JSP pages pre-compiled with a
JSP 1.2 compiler).

In addition, an ErrorData instance must be initialized based on the error
handler ServletRequest attributes defined by the Servlet specification, and made
available through the PageContext to the page. This has the effect of providing
easy access to the error information via the Expression Language. For example, an

1. Note that this is independent of scripting language. This specification re-
quires that unhandled errors occurring in a scripting language environ-
ment used in a JSP container implementation to be signalled to the JSP
page implementation class via the Java programming language exception
mechanism.

Comments 1-35

JavaServer Pages 2.1 Specification

Error Page can access the status code using the syntax ${pageContext.error-

Data.statusCode}. See Chapter JSP.12, “Core API” for details.
By default, a JSP error page sets the status code of the response to the value of

${pageContext.errorData.statusCode} (which is equal to 500 by default), but may
set it to a different value (including 200) as it sees fit.

A JSP container must detect if a JSP error page is self-referencing and throw a
translation error.

JSP.1.5 Comments

There are different types of comments available in JSP pages in standard syntax
and JSP documents (in XML syntax).

JSP.1.5.1 Comments in JSP Pages in Standard Syntax

There are two types of comments in a JSP page: comments to the JSP page
itself, documenting what the page is doing; and comments that are intended to
appear in the generated document sent to the client.

JSP.1.5.1.1 Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the
requesting client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP
container. Dynamic content that appears within HTML/XML comments, such as
actions, scriptlets and expressions, is still processed by the container. If the
generated comment is to have dynamic data, this can be obtained through an
expression syntax, as in:

<!-- comments <%= expression %> more comments ... -->

JSP.1.5.1.2 JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>

CORE SYNTAX AND SEMANTICS1-36

JavaServer Pages 2.1 Specification

The body of the content is ignored completely. Comments are useful for
documentation but also are used to “comment out” some portions of a JSP page.
Note that JSP comments do not nest.

An alternative way to place a comment in JSP is to use the comment
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>

JSP.1.5.2 Comments in JSP Documents

Comments in JSP documents use the XML syntax, as follows:

<!-- comments ... ->

The body of the content is ignored completely. Comments in JSP documents
may be used for documentation purposes and for “commenting out” portions of a
JSP page.

Comments in JSP documents do not nest.

JSP.1.6 Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

Note – The current quoting rules do not allow for quoting special characters
such as \n - the only current way to do this in a JSP is with a Java expression.

Quoting in EL Expressions

■ There is no special quoting mechanism within EL expressions; use a literal
‘${‘ if the literal ${ is desired and expressions are enabled for the page (simi-
larly, use a literal ‘#{‘ if the literal #{ is desired).For example, the evaluation
of ${‘${‘} is ‘${‘. Note that ${‘}’} is legal, and simply evaluates to ‘}’.

Quoting in Scripting Elements

■ A literal %> is quoted by %\>

Quoting and Escape Conventions 1-37

JavaServer Pages 2.1 Specification

Quoting in Template Text

■ A literal <% is quoted by <\%

■ Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$, and a literal # can be quoted
by \#. This is not required but is useful for quoting EL expressions.

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute value is a
literal or a request-time attribute expression. Quoting can be used in attribute
values regardless of whether they are delimited using single or double quotes. It is
only required as described below.

■ A ‘ is quoted as \’. This is required within a single quote-delimited attribute
value.

■ A “ is quoted as \”. This is required within a double quote-delimited attribute
value.

■ A \ is quoted as \\

■ Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$. Similarly, a literal # can be
quoted by \#. This is not required but is useful for quoting EL expressions.

■ A %> is quoted as %\>

■ A <% is quoted as <\%

■ The entities ' and " are available to describe single and double
quotes.

Examples

The following line shows an illegal attribute values.

<mytags:tag value="<%= "hi!" %>" />

The following line shows a legal scriptlet, but perhaps with an intended value.
The result is Joe said %\> not Joe said %>.

<%= "Joe said %\\>" %>

The next lines are all legal quotations.

CORE SYNTAX AND SEMANTICS1-38

JavaServer Pages 2.1 Specification

<%= "Joe said %/>" %>

<%= "Joe said %\>" %>

<% String joes_statement = "hi!"; %>

<%= "Joe said \"" + joes_statement + "\"." %>

<x:tag value='<%="Joe said \\"" + joes_statement + "\\"."%>'/>

<x:tag value='<%= "hi!" %>' />

<x:tag value="<%= \"hi!\" %>" />

<x:tag value='<%= \"name\" %>' />

<x:tag value="<%= \"Joe said 'hello'\" %>"/>

<x:tag value="<%= \"Joe said \\\"hello\\\" \" %>"/>

<x:tag value="end expression %\>"/>

<% String s="abc"; %>

<x:tag value="<%= s + \"def\" + \"jkl\" + 'm' + \'n\' %>" />

<x:tag value='<%= s + \"def\" + "jkl" + \'m\' + \'n\' %>' />

XML Documents

The quoting conventions are different from those of XML. See Chapter JSP.6,
“JSP Documents”.

JSP.1.7 Overall Semantics of a JSP Page

A JSP page implementation class defines a _jspService() method mapping from
the request to the response object. Some details of this transformation are specific to
the scripting language used (see Chapter JSP.9, “Scripting”). Most details are not
language specific and are described in this chapter.

The content of a JSP page is devoted largely to describing the data that is
written into the output stream of the response. (The JSP container usually sends
this data back to the client.) The description is based on a JspWriter object that is
exposed through the implicit object out (see Section JSP.1.8.3, “Implicit
Objects”). Its value varies:

• Initially, out is a new JspWriter object. This object may be different from the
stream object returned from response.getWriter(), and may be considered to be
interposed on the latter in order to implement buffering (see

Objects 1-39

JavaServer Pages 2.1 Specification

Section JSP.1.10.1, “The page Directive”). This is the initial out object. JSP
page authors are prohibited from writing directly to either the PrintWriter or
OutputStream associated with the ServletResponse.

• The JSP container should not invoke response.getWriter() until the time when
the first portion of the content is to be sent to the client. This enables a number
of uses of JSP, including using JSP as a language to “glue” actions that deliver
binary content, or reliably forwarding to a servlet, or change dynamically the
content type of the response before generating content. See Chapter JSP.4,
“Internationalization Issues”.

• Within the body of some actions, out may be temporarily re-assigned to a dif-
ferent (nested) instance of a JspWriter object. Whether this is the case depends
on the details of the action’s semantics. Typically the content of these tempo-
rary streams is appended to the stream previously referred to by out, and out is
subsequently re-assigned to refer to the previous (nesting) stream. Such nest-
ed streams are always buffered, and require explicit flushing to a nesting
stream or their contents will be discarded.

• If the initial out JspWriter object is buffered, then depending upon the value of
the autoFlush attribute of the page directive, the content of that buffer will ei-
ther be automatically flushed out to the ServletResponse output stream to ob-
viate overflow, or an exception shall be thrown to signal buffer overflow. If the
initial out JspWriter is unbuffered, then content written to it will be passed di-
rectly through to the ServletResponse output stream.

A JSP page can also describe what should happen when some specific events
occur. In JSP 2.1, the only events that can be described are the initialization and
the destruction of the page. These events are described using “well-known method
names” in declaration elements. (See Section JSP.11.1.1.1, “Protocol Seen by the
JSP Page Author”).

JSP.1.8 Objects

A JSP page can access, create, and modify server-side objects. Objects can be
made visible to actions, EL expressions and to scripting elements. An object has a
scope describing what entities can access the object.

Actions can access objects using a name in the PageContext object.
An object exposed through a scripting variable has a scope within the page.

Scripting elements can access some objects directly via a scripting variable. Some

CORE SYNTAX AND SEMANTICS1-40

JavaServer Pages 2.1 Specification

implicit objects are visible via scripting variables and EL expressions in any JSP
page.

JSP.1.8.1 Objects and Variables

An object may be made accessible to code in the scripting elements through a
scripting language variable. An element can define scripting variables that will con-
tain, at process request-time, a reference to the object defined by the element,
although other references may exist depending on the scope of the object.

An element type indicates the name and type of such variables although
details on the name of the variable may depend on the Scripting Language. The
scripting language may also affect how different features of the object are
exposed. For example, in the JavaBeans specification, properties are exposed via
getter and setter methods, while these properties are available directly as variables
in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language
specific. Chapter JSP.1.1 defines the rules for when the language attribute of the
page directive is java.

JSP.1.8.2 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a
request. The JSP specification indicates that some objects are created implicitly,
perhaps as a result of a directive (see Section JSP.1.8.3, “Implicit Objects”). Other
objects are created explicitly through actions, or created directly using scripting
code. Created objects have a scope attribute defining where there is a reference to
the object and when that reference is removed.

The created objects may also be visible directly to scripting elements through
scripting-level variables (see Section JSP.1.8.3, “Implicit Objects”).

Each action and declaration defines, as part of its semantics, what objects it
creates, with what scope attribute, and whether they are available to the scripting
elements.

Objects are created within a JSP page instance that is responding to a request
object. There are several scopes:

• page - Objects with page scope are accessible only within the page where they
are created. All references to such an object shall be released after the response
is sent back to the client from the JSP page or the request is forwarded some-

Objects 1-41

JavaServer Pages 2.1 Specification

where else. References to objects with page scope are stored in the pageCon-

text object.

• request - Objects with request scope are accessible from pages processing the
same request where they were created. References to the object shall be re-
leased after the request is processed. In particular, if the request is forwarded
to a resource in the same runtime, the object is still reachable. References to
objects with request scope are stored in the request object.

• session - Objects with session scope are accessible from pages processing re-
quests that are in the same session as the one in which they were created. It is
not legal to define an object with session scope from within a page that is not
session-aware (see Section JSP.1.10.1, “The page Directive”). All references
to the object shall be released after the associated session ends. References to
objects with session scope are stored in the session object associated with the
page activation.

• application - Objects with application scope are accessible from pages process-
ing requests that are in the same application as they one in which they were cre-
ated. Objects with application scope can be defined (and reached) from pages
that are not session-aware. References to objects with application scope are
stored in the application object associated with a page activation. The applica-

tion object is the servlet context obtained from the servlet configuration object.
All references to the object shall be released when the runtime environment re-
claims the ServletContext.

A name should refer to a unique object at all points in the execution; that is,
all the different scopes really should behave as a single name space. A JSP
container implementation may or may not enforce this rule explicitly for
performance reasons.

JSP.1.8.3 Implicit Objects

JSP page authors have access to certain implicit objects that are always avail-
able for use within scriptlets and scriptlet expressions through scripting variables
that are declared implicitly at the beginning of the page. All scripting languages are
required to provide access to these objects. See Section JSP.2.4, “Implicit Objects”
for the implicit objects available within EL expressions. Implicit objects are avail-
able to tag handlers through the pageContext object, see below.

CORE SYNTAX AND SEMANTICS1-42

JavaServer Pages 2.1 Specification

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet API package, as shown in Table JSP.1-6.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable
Name Type Semantics & Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.http.HttpServletRequest

The request triggering
the service invocation.
request scope.

response protocol dependent subtype of:
javax.servlet.ServletResponse, e.g:
javax.servlet.http.HttpServletResponse

The response to the
request.
page scope.

pageContext javax.servlet.jsp.PageContext The page context for this
JSP page.
page scope.

session javax.servlet.http.HttpSession The session object
created for the requesting
client (if any).
This variable is only
valid for HTTP
protocols.
session scope

application javax.servlet.ServletContext The servlet context
obtained from the servlet
configuration object
(as in the call getServlet-
Config().
getContext())
application scope

out javax.servlet.jsp.JspWriter An object that writes into
the output stream.
page scope

config javax.servlet.ServletConfig The ServletConfig for
this JSP page
page scope

Objects 1-43

JavaServer Pages 2.1 Specification

In addition, the exception implicit object can be accessed in an error page, as
described in Table JSP.1-7.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

See Section JSP.7.5.1, “How to Define New Implicit Objects” for some non-
normative conventions for the introduction of new implicit objects.

JSP.1.8.4 The pageContext Object

A PageContext is an object that provides a context to store references to objects
used by the page, encapsulates implementation-dependent features, and provides
convenience methods. A JSP page implementation class can use a PageContext to
run unmodified in any compliant JSP container while taking advantage of imple-
mentation-specific improvements like high performance JspWriters.

See Chapter JSP.12, “Core API” for more details.

page java.lang.Object The instance of this
page’s implementation
class processing the
current requesta

page scope

a. When the scripting language is java then page is a synonym for this in the
body of the page.

Table JSP.1-7 Implicit Objects Available in Error Pages

Variable
Name Type Semantics & Scope

exception java.lang.Throwable The uncaught Throwable
that resulted in the error
page being invoked.
page scope.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable
Name Type Semantics & Scope

CORE SYNTAX AND SEMANTICS1-44

JavaServer Pages 2.1 Specification

JSP.1.9 Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template
text is passed through to the current out JspWriter implicit object, after applying the
substitutions of Section JSP.1.6, “Quoting and Escape Conventions”.

JSP.1.10 Directives

Directives are messages to the JSP container. Directives have this syntax:

<%@ directive { attr=”value” }* %>

There may be optional white space after the <%@ and before %>.
This syntax is easy to type and concise but it is not XML-compatible.

Chapter JSP.6, “JSP Documents” describes equivalent alternative mechanisms
that are consistent with XML syntax.

Directives do not produce any output into the current out stream.
There are three directives: the page and the taglib directives are described

next, while the include directive is described in “The include Directive” on
page 53.

JSP.1.10.1 The page Directive

The page directive defines a number of page dependent properties and commu-
nicates these to the JSP container.

This <jsp:directive.page> element (Section JSP.6.3.4, “The jsp:directive.page
Element”) describes the same information following the XML syntax.

A translation unit (JSP source file and any files included via the include

directive) can contain more than one instance of the page directive, all the
attributes will apply to the complete translation unit (i.e. page directives are
position independent). An exception to this position independence is the use of the
pageEncoding and contentType attributes in the determination of the page
character encoding; for this purpose, they should appear at the beginning of the
page (see Section JSP.4.1). There shall be only one occurrence of any attribute/
value pair defined by this directive in a given translation unit, unless the values for
the duplicate attributes are identical for all occurrences. The import and pageEn-

coding attributes are exempt from this rule and can appear multiple times.
Multiple uses of the import attribute are cumulative (with ordered set union
semantics). The pageEncoding attribute can occur at most once per file (or a

Directives 1-45

JavaServer Pages 2.1 Specification

translation error will result), and applies only to the file in which it appears. Other
such multiple attribute/value (re)definitions result in a fatal translation error if the
values do not match.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP
page:

<%@ page info=”my latest JSP Example” %>

The following directive requests no buffering, and provides an error page.

<%@ page buffer=”none” errorPage=”/oops.jsp” %>

The following directive indicates that the scripting language is based on Java,
that the types declared in the package com.myco are directly available to the
scripting code, and that a buffering of 16KB should be used.

<%@ page language=”java” import=”com.myco.*” buffer=”16kb” %>

Syntax

<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language=”scriptingLanguage”}

{ extends=”className” }

{ import=”importList” }

{ session=”true|false” }

{ buffer=”none|sizekb” }

{ autoFlush=”true|false” }

{ isThreadSafe=”true|false” }

{ info=”info_text” }

{ errorPage=”error_url” }

{ isErrorPage=”true|false” }

{ contentType=”ctinfo” }

{ pageEncoding=”peinfo” }

{ isELIgnored=”true|false” }

CORE SYNTAX AND SEMANTICS1-46

JavaServer Pages 2.1 Specification

{ deferredSyntaxAllowedAsLiteral=”true|false”}

{ trimDirectiveWhitespaces=”true|false”}

The details of the attributes are as follows:

Table JSP.1-8 Page Directive Attributes

language Defines the scripting language to be used in the scriptlets,
expression scriptlets, and declarations within the body of the
translation unit (the JSP page and any files included using
the include directive below).
In JSP 2.1, the only defined and required scripting language
value for this attribute is java (all lowercase, case-sensitive).
This specification only describes the semantics of scripts for
when the value of the language attribute is java.
When java is the value of the scripting language, the Java
Programming Language source code fragments used within
the translation unit are required to conform to the Java
Programming Language Specification in the way indicated
in Chapter JSP.9, “Scripting”.
All scripting languages must provide some implicit objects
that a JSP page author can use in declarations, scriptlets, and
expressions. The specific objects that can be used are defined
in Section JSP.1.8.3, “Implicit Objects”.”
All scripting languages must support the Java Runtime
Environment (JRE). All scripting languages must expose the
Java technology object model to the script environment,
especially implicit variables, JavaBeans component
properties, and public methods.
Future versions of the JSP specification may define
additional values for the language attribute and all such
values are reserved.
It is a fatal translation error for a directive with a non-java
language attribute to appear after the first scripting element
has been encountered.
Default is java.

Directives 1-47

JavaServer Pages 2.1 Specification

extends The value is a fully qualified Java programming language
class name, that names the superclass of the class to which
this JSP page is transformed (see Chapter JSP.11, “JSP
Container”).
This attribute should not be used without careful
consideration as it restricts the ability of the JSP container to
provide specialized superclasses that may improve on the
quality of rendered service. See Section JSP.7.5.1, “How to
Define New Implicit Objects” for an alternate way to
introduce objects into a JSP page that does not have this
drawback.

import An import attribute describes the types that are available to
the scripting environment. The value is as in an import
declaration in the Java programming language, a (comma
separated) list of either a fully qualified Java programming
language type name denoting that type, or of a package name
followed by the .* string, denoting all the public types
declared in that package. The import list shall be imported
by the translated JSP page implementation and is thus
available to the scripting environment.
Packages java.lang.*, javax.servlet.*, javax.servlet.jsp.*, and
javax.servlet.http.* are imported implicitely by the JSP
container. No other packages may be part of this implicitely
imported list. Page authors may use the include-prelude
feature (see Section JSP.3.3.5, “Defining Implicit Includes”)
in order to have additional packages imported transparently
into their pages.
This attribute is currently only defined when the value of the
language directive is java.

session Indicates that the page requires participation in an (HTTP)
session.
If true then the implicit script language variable named ses-
sion of type javax.servlet.http.HttpSession references the
current/new session for the page.
If false then the page does not participate in a session; the
session implicit variable is unavailable, and any reference to
it within the body of the JSP page is illegal and shall result in
a fatal translation error.
Default is true.

Table JSP.1-8 Page Directive Attributes

CORE SYNTAX AND SEMANTICS1-48

JavaServer Pages 2.1 Specification

buffer Specifies the buffering model for the initial out JspWriter to
handle content output from the page.
If none, then there is no buffering and all output is written
directly through to the ServletResponse PrintWriter.
The size can only be specified in kilobytes. The suffix kb is
mandatory or a translation error must occur.
If a buffer size is specified then output is buffered with a
buffer size not less than that specified.
Depending upon the value of the autoFlush attribute, the
contents of this buffer is either automatically flushed, or an
exception is raised, when overflow would occur.
The default is buffered with an implementation buffer size of
not less than 8kb.

autoFlush Specifies whether the buffered output should be flushed
automatically (true value) when the buffer is filled, or
whether an exception should be raised (false value) to
indicate buffer overflow. It is illegal, resulting in a translation
error, to set autoFlush to false when buffer=none. The default
value is true.

isThreadSafe Note: The Servlet 2.4 specification deprecates
SingleThreadModel, which is the most common
mechanism for JSP containers to implement isThreadSafe.
Page authors are advised against using isThreadSafe, as
the generated Servlet may contain deprecated code.

Indicates the level of thread safety implemented in the page.
If false then the JSP container shall dispatch multiple
outstanding client requests, one at a time, in the order they
were received, to the page implementation for processing.
If true then the JSP container may choose to dispatch
multiple outstanding client requests to the page
simultaneously.
Page authors using true must ensure that they properly
synchronize access to the shared state of the page.
Default is true.
Note that even if the isThreadSafe attribute is false the JSP
page author must ensure that accesses to any shared objects
are properly synchronized., The objects may be shared in
either the ServletContext or the HttpSession.

Table JSP.1-8 Page Directive Attributes

Directives 1-49

JavaServer Pages 2.1 Specification

info Defines an arbitrary string that is incorporated into the
translated page, that can subsequently be obtained from the
page’s implementation of Servlet.getServletInfo method.

isErrorPage Indicates if the current JSP page is intended to be the URL
target of another JSP page’s errorPage.
If true, then the implicit script language variable exception is
defined and its value is a reference to the offending
Throwable from the source JSP page in error.
If false then the exception implicit variable is unavailable,
and any reference to it within the body of the JSP page is
illegal and shall result in a fatal translation error.
Default is false.

errorPage Defines a URL to a resource to which any Java programming
language Throwable object(s) thrown but not caught by the
page implementation are forwarded for error processing.
The provided URL spec is as in Section JSP.1.2.1.
If the URL names another JSP page then, when invoked that
JSP page’s exception implicit script variable shall contain a
reference to the originating uncaught Throwable.
The default URL is implementation dependent.
Note the Throwable object is transferred by the throwing
page implementation to the error page implementation by
saving the object reference on the common ServletRequest
object using the setAttribute method, with a name of
javax.servlet.jsp.jspException (for backwards-compatibility)
and also javax.servlet.error.exception (for compatibility with
the servlet specification). See Section JSP.1.4.3 for more
details).
Note: if autoFlush=true then if the contents of the initial Jsp-
Writer has been flushed to the ServletResponse output stream
then any subsequent attempt to dispatch an uncaught
exception from the offending page to an errorPage may fail.
If the page defines an error page via the page directive, any
error pages defined in web.xml will not be used.

Table JSP.1-8 Page Directive Attributes

CORE SYNTAX AND SEMANTICS1-50

JavaServer Pages 2.1 Specification

contentType Defines the MIME type and the character encoding for the
response of the JSP page, and is also used in determining the
character encoding of the JSP page.
Values are either of the form “TYPE” or “TYPE;char-
set=CHARSET”with an optional white space after the “;”.
“TYPE” is a MIME type, see the IANA registry at http://
www.iana.org/assignments/media-types/index.html for useful
values. “CHARSET”, if present, must be the IANA name for
a character encoding.
The default value for “TYPE” is “text/html” for JSP pages in
standard syntax, or “text/xml” for JSP documents in XML
syntax. If “CHARSET” is not specified, the response
character encoding is determined as described in
Section JSP.4.2, “Response Character Encoding”.
See Chapter JSP.4, “Internationalization Issues” for
complete details on character encodings.

pageEncoding Describes the character encoding for the JSP page. The value
is of the form “CHARSET”, which must be the IANA name
for a character encoding. For JSP pages in standard syntax,
the character encoding for the JSP page is the charset given
by the pageEncoding attriute if it is present, otherwise the
charset given by the contentType attribute if it is present,
otherwise “ISO-8859-1”.
For JSP documents in XML syntax, the character encoding
for the JSP page is determined as described in section 4.3.3
and appendix F.1 of the XML specification. The pageEncod-
ing attribute is not needed for such documents. It is a
translation-time error if a document names different
encodings in its XML prolog / text declaration and in the
pageEncoding attribute. The corresponding JSP
configuration element is page-encoding (see
Section JSP.3.3.4, “Declaring Page Encodings”).
See Chapter JSP.4, “Internationalization Issues” for
complete details on character encodings.

Table JSP.1-8 Page Directive Attributes

Directives 1-51

JavaServer Pages 2.1 Specification

JSP.1.10.2 The taglib Directive

The set of significant tags a JSP container interprets can be extended through a
tag library.

The taglib directive in a JSP page declares that the page uses a tag library,
uniquely identifies the tag library using a URI and associates a tag prefix that will
distinguish usage of the actions in the library.

If a JSP container implementation cannot locate a tag library description, a
fatal translation error shall result.

isELIgnored Defines whether EL expressions are ignored or recognized
for this page and translation unit. If true, EL expressions (of
the form ${...} and #{...}) are ignored by the container. If false,
EL expressions (of the form ${...} and #{...}) are recognized
when they appear in template text or action attributes. The
corresponding JSP configuration element is el-ignored (see
Section JSP.3.3.2, “Deactivating EL Evaluation”). The
default value varies depending on the web.xml version - see
Section JSP.2.5, “Deactivating EL Evaluation”.

deferredSyntaxAl-
lowedAsLiteral

Indicates if the character sequence #{ is allowed or not when
used as a String literal in this page and translation unit. If
false (the default value), a translation error occurs when the
character sequence is used as a String literal. The
corresponding JSP configuration element is deferred-syntax-

allowed-as-literal (see Section JSP.3.3.7, “Deferred Syntax
(character sequence #{)”). See “Backwards Compatibility
with JSP 2.0 for more information.

trimDirective-
Whitespaces

Indicates how whitespaces in template text should be
handled. If true, template text that contains only whitespaces
is removed from the output. The default is not to trim
whitespaces. This attribute is useful to remove the
extraneous whitespaces from the end of a directive that is not
followed by template text. The corresponding JSP
configuration element is trim-directive-whitespaces (see
Section JSP.3.3.8, “Removing whitespaces from template
text”). The attribute is ignored by JSP documents (XML
syntax).

Table JSP.1-8 Page Directive Attributes

CORE SYNTAX AND SEMANTICS1-52

JavaServer Pages 2.1 Specification

It is a fatal translation error for the taglib directive to appear after actions or
functions using the prefix.

A tag library may include a validation method that will be consulted to
determine if a JSP page is correctly using the tag library functionality.

See Chapter JSP.7, “Tag Extensions” for more specification details. And see
Section JSP.7.2.3, “Tag Library directive” for an implementation note.

Section JSP.6.3.1, “Namespaces, Standard Actions, and Tag Libraries”
describes how the functionality of this directive can be exposed using XML
syntax.

Examples

In the following example, a tag library is introduced and made available to
this page using the super prefix; no other tag libraries should be introduced in
this page using this prefix. In this particular case, we assume the tag library
includes a doMagic element type, which is used within the page.

<%@ taglib uri=”http://www.mycorp/supertags” prefix=”super” %>

...

<super:doMagic>

...

</super:doMagic>

Syntax

<%@ taglib (uri=”tagLibraryURI” | tagdir=”tagDir”) prefix=”tagPrefix” %>

where the attributes are:

Table JSP.1-9

uri Either an absolute URI or a relative URI specification that
uniquely identifies the tag library descriptor associated with
this prefix.
The URI is used to locate a description of the tag library as
indicated in Chapter JSP.7, “Tag Extensions”.

Directives 1-53

JavaServer Pages 2.1 Specification

A fatal translation-time error will result if the JSP page translator encounters a
tag with name prefix: Name using a prefix that is introduced using the taglib
directive, and Name is not recognized by the corresponding tag library.

JSP.1.10.3 The include Directive

The include directive is used to substitute text and/or code at JSP page transla-
tion-time. The <%@ include file=”relativeURLspec” %> directive inserts the text of
the specified resource into the page or tag file. The included file is subject to the
access control available to the JSP container. The file attribute is as in
Section JSP.1.2.1.

With respect to the standard and XML syntaxes, a file included via the include

directive can use either the same syntax as the including page, or a different
syntax. the semantics for mixed syntax includes are described in
Section JSP.1.10.5.

A JSP container can include a mechanism for being notified if an included file
changes, so the container can recompile the JSP page. However, the JSP 2.1
specification does not have a way of directing the JSP container that included files
have changed.

The <jsp:directive.include> element (Section JSP.6.3.5, “The
jsp:directive.include Element”) describes the same information following the
XML syntax.

tagdir Indicates this prefix is to be used to identify tag extensions
installed in the /WEB-INF/tags/ directory or a subdirectory.
An implicit tag library descriptor is used (see
Section JSP.8.4, “Packaging Tag Files” for details). A
translation error must occur if the value does not start with /
WEB-INF/tags. A translation error must occur if the value
does not point to a directory that exists. A translation error
must occur if used in conjunction with the uri attribute.

prefix Defines the prefix string in <prefix>:<tagname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>.
Prefixes starting with jsp:, jspx:, java:, javax:, servlet:, sun:,
and sunw: are reserved.
A prefix must follow the naming convention specified in the
XML namespaces specification.
Empty prefixes are illegal in this version of the specification,
and must result in a translation error.

Table JSP.1-9

CORE SYNTAX AND SEMANTICS1-54

JavaServer Pages 2.1 Specification

Examples

The following example requests the inclusion, at translation time, of a copy-
right file. The file may have elements which will be processed too.

<%@ include file=”copyright.html” %>

Syntax

<%@ include file="relativeURLspec" %>

JSP.1.10.4 Implicit Includes

Many JSP pages start with a list of taglib directives that activate the use of tag
libraries within the page. In some cases, these are the only tag libraries that are sup-
posed to be used by the JSP page authors. These, and other common conventions are
greately facilitated by two JSP configuration elements: include-prelude and include-

coda. A full description of the mechanism is in Section JSP.3.3.5, “Defining Implicit
Includes”.

With respect to the standard and XML syntaxes, just as with the include

directive, implicit includes can use either the same syntax as the including page,
or a different syntax. The semantics for mixed syntax includes are described in
Section JSP.1.10.5.

JSP.1.10.5 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the
JSP 2.1 specification has two include mechanisms suited to different tasks. A sum-
mary of their semantics is shown in Table JSP.1-10.

Table JSP.1-10 Summary of Include Mechanisms in JSP 2.1

Syntax Spec Object Description Section

Include Directive - Translation-time

<%@ include file=... %> file-
relative

static Content is parsed
by JSP container.

JSP.1.10.3

Include Action - Request-time

Directives 1-55

JavaServer Pages 2.1 Specification

The Spec column describes what type of specification is valid to appear in the
given element. The JSP specification requires a relative URL spec. The reference
is resolved by the web/application server and its URL map is involved. Include
directives are interpreted relative to the current JSP file; jsp:include actions are
interpreted relative to the current JSP page.

An include directive regards a resource like a JSP page as a static object; i.e.
the text in the JSP page is included. An include action regards a resource like a
JSP page as a dynamic object; i.e. the request is sent to that object and the result of
processing it is included.

Implicit include directives can also be requested for a collection of pages
through the use of the <include-prelude> and <include-coda> elements of the JSP
configuration section of web.xml.

For translation-time includes, included content can use either the same syntax
as the including page, or a different syntax. For example, a JSP file written in the
standard JSP syntax can include a JSP file written using the XML syntax. The
following semantics for translation-time includes apply:

• The JSP container must detect the syntax for each JSP file individually and
parse each JSP file according to the syntax in which it is written.

• A JSP file written using the XML syntax must be well-formed according to
the "XML" and "Namespaces in XML" specifications, otherwise a translation
error must occur.

• When including a JSP document (written in the XML syntax), in the resulting
XML View of the translation unit the root element of the included segment
must have the default namespace reset to "". This is so that any namespaces
associated with the empty prefix in the including document are not carried
over to the included document.

• When a taglib directive is encountered in a standard syntax page, the
namespace is applied globally, and is added to the <jsp:root> element of the
resulting XML View of the translation unit.

• If a taglib directive is encountered in a standard syntax page that attempts to
redefine a prefix that is already defined in the current scope (by a JSP segment

<jsp:include page= /> page-
relative

static
and dynamic

Content is not
parsed; it is
included in place.

JSP.5.4

Table JSP.1-10 Summary of Include Mechanisms in JSP 2.1

CORE SYNTAX AND SEMANTICS1-56

JavaServer Pages 2.1 Specification

in either syntax), a translation error must occur unless that prefix is being re-
defined to the same namespace URI.

See Section JSP.10.3, “Examples” for examples of how these semantics are
applied to actual JSP pages and documents.

JSP.1.10.6 Additional Directives for Tag Files

Additional directives are available when editing a tag file. See Section JSP.8.5,
“Tag File Directives” for details.

JSP.1.11 EL Elements

EL expressions can appear in template data and in attribute values. EL expres-
sions are defined in more detail in Chapter JSP.2, “Expression Language”.

EL expressions can be disabled through the use of JSP configuration elements
and page directives; see Section JSP.1.10.1 and Section JSP.3.3.2, “Deactivating
EL Evaluation”.

EL expressions, when not disabled, can be used anywhere within template
data.

EL expressions can be used in any attribute of a standard action that this
specification indicates can accept a run-time expression value, and in any attribute
of a custom action that has been indicated to accept run-time expressions (i.e.
their associated <rtexprvalue> in the TLD is true; see Appendix JSP.C).

JSP.1.12 Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform
computation that affects the content generated.

JSP 2.0 adds EL expressions as an alternative to scripting elements. These are
described in more detail in Chapter JSP.2, “Expression Language”. Note that
scripting elements can be disabled through the use of the scripting-invalid element in
the web.xml deployment descriptor (see Section JSP.3.3.3, “Disabling Scripting
Elements”).

There are three other classes of scripting elements: declarations, scriptlets
and expressions. The scripting language used in the current page is given by the
value of the language directive (see Section JSP.1.10.1, “The page Directive”). In
JSP 2.1, the only value defined is java.

Scripting Elements 1-57

JavaServer Pages 2.1 Specification

Declarations are used to declare scripting language constructs that are
available to all other scripting elements. Scriptlets are used to describe actions to
be performed in response to some request. Scriptlets that are program fragments
can also be used to do things like iterations and conditional execution of other
elements in the JSP page. Expressions are complete expressions in the scripting
language that get evaluated at response time; commonly, the result is converted
into a string and inserted into the output stream.

All JSP containers must support scripting elements based on the Java
programming language. Additionally, JSP containers may also support other
scripting languages. All such scripting languages must support:

• Manipulation of Java objects.

• Invocation of methods on Java objects.

• Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements
based on the Java programming language is given in Chapter JSP.9, “Scripting”.

The semantics for other scripting languages are not precisely defined in this
version of the specification, which means that portability across implementations
cannot be guaranteed. Precise definitions may be given for other languages in the
future.

Each scripting element has a <%-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after <%!, <%, and <%=, and before %>.
The equivalent XML elements for these scripting elements are described in

Section JSP.6.3.7, “Scripting Elements”.

JSP.1.12.1 Declarations

Declarations are used to declare variables and methods in the scripting language
used in a JSP page. A declaration must be a complete declarative statement, or
sequence thereof, according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.
Declarations are initialized when the JSP page is initialized and are made

available to other declarations, scriptlets, and expressions.

CORE SYNTAX AND SEMANTICS1-58

JavaServer Pages 2.1 Specification

The <jsp:declaration> element (Section JSP.6.3.7, “Scripting Elements”)
describes the same information following the XML syntax.

Examples

For example, the first declaration below declares an integer, global to the
page. The second declaration does the same and initializes it to zero. This type
of initialization should be done with care in the presence of multiple requests
on the page. The third declaration declares a method global to the page.

<%! int i; %>

<%! int i = 0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax

<%! declaration(s) %>

JSP.1.12.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting lan-
guage specified in the language attribute of the page directive. Whether the code
fragment is legal depends on the details of the scripting language (see
Chapter JSP.9, “Scripting”).

Scriptlets are executed at request-processing time. Whether or not they
produce any output into the out stream depends on the code in the scriptlet.
Scriptlets can have side-effects, modifying the objects visible to them.

When all scriptlet fragments in a given translation unit are combined in the
order they appear in the JSP page, they must yield a valid statement, or sequence
of statements, in the specified scripting language.

To use the %> character sequence as literal characters in a scriptlet, rather
than to end the scriptlet, escape them by typing %\>.

The <jsp:scriptlet> element (Section JSP.6.3.7, “Scripting Elements”)
describes the same information following the XML syntax.

Examples

Here is a simple example where the page changed dynamically depending on
the time of day.

Scripting Elements 1-59

JavaServer Pages 2.1 Specification

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning
<% } else { %>
Good Afternoon
<% } %>

A scriptlet can also have a local variable declaration, for example the following
scriptlet just declares and initializes an integer, and later increments it.

<% int i; i= 0; %>
About to increment i...
<% i++ %>

Syntax

<% scriptlet %>

JSP.1.12.3 Expressions

An expression element in a JSP page is a scripting language expression that is
evaluated and the result is coerced to a String. The result is subsequently emitted
into the current out JspWriter object.

If the result of the expression cannot be coerced to a String the following must
happen: If the problem is detected at translation time, a translation time error shall
occur. If the coercion cannot be detected during translation, a ClassCastException

shall be raised at request time.
A scripting language may support side-effects in expressions when the

expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If
an expression appears in more than one run-time attribute, they are evaluated left-
to-right in the tag. An expression might change the value of the out object,
although this is not something to be done lightly.

The expression must be a complete expression in the scripting language in
which it is written, or a translation error must occur.

Expressions are evaluated at request processing time. The value of an
expression is converted to a String and inserted at the proper position in the .jsp

file.
The <jsp:expression> element (Section JSP.6.3.7, “Scripting Elements”)

describes the same information following the XML syntax.

CORE SYNTAX AND SEMANTICS1-60

JavaServer Pages 2.1 Specification

Examples

This example inserts the current date.

<%= (new java.util.Date()).toLocaleString() %>

Syntax

<%= expression %>

JSP.1.13 Actions

Actions may affect the current out stream and use, modify and/or create objects.
Actions may depend on the details of the specific request object received by the JSP
page.

The JSP specification includes some actions that are standard and must be
implemented by all conforming JSP containers; these actions are described in
Chapter JSP.5, “Standard Actions”.

New actions are defined according to the mechanisms described in
Chapter JSP.7, “Tag Extensions” and Chapter JSP.13, “Tag Extension API” and
are introduced using the taglib directive.

The syntax for action elements is based on XML. Actions can be empty or
non-empty.

JSP.1.14 Tag Attribute Interpretation Semantics

The interpretation of all actions start by evaluating the values given to its
attributes left to right, and assigning the values to the attributes. In the process some
conversions may be applicable; the rules for them are described in
Section JSP.1.14.2.

Many values are fixed translation-time values, but JSP 2.1 also provides a
mechanism for describing values that are computed at request time, the rules are
described in Section JSP.1.14.1.

JSP.1.14.1 Request Time Attribute Values

An attribute value of the form “<%= scriptlet_expr %>” or
‘<%= scriptlet_expr %>’ denotes a request-time attribute value. The value denoted
is that of the scriptlet expression involved. If Expression Language evaluation is

Tag Attribute Interpretation Semantics 1-61

JavaServer Pages 2.1 Specification

not deactivated for the translation unit (see Section JSP.3.3.2, “Deactivating EL
Evaluation”) then request-time attribute values can also be specified using the EL
through the syntax ‘${el_expr}’ or “${el_expr}” (as well as ‘#{el_expr}’ or
“#{el_expr}”). Containers must also recognize multiple EL expressions mixed with
optional string constants. For example, “Version ${major}.${minor} Installed” is
a valid request-time attribute value.

Request-time attribute values can only be used in actions. If a request-time
attribute value is used in a directive, a translation error must occur. If there are
more than one such attribute in a tag, the expressions are evaluated left-to-right.

Quotation is done as in any other attribute value (Section JSP.1.6).
Only attribute values can be denoted this way (the name of the attribute is

always an explicit name). When using scriptlet expressions, the expression must
appear by itself (multiple expressions, and mixing of expressions and string
constants are not permitted). Multiple operations must be performed within the
expression. Type conversions are described in Section JSP.1.14.2.

By default, except in tag files, all attributes have page translation-time
semantics. Attempting to specify a scriptlet expression or EL expression as the
value for an attribute that (by default or otherwise) has page translation time
semantics is illegal, and will result in a fatal translation error. The type of an
action element indicates whether a given attribute will accept request-time
attribute values.

Most attributes in the standard actions from Chapter JSP.5, “Standard
Actions” have page translation-time semantics, but the following attributes accept
request-time attribute expressions:

• The value attribute of jsp:setProperty (Section JSP.5.2).

• The beanName attribute of jsp:useBean (Section JSP.5.1).

• The page attribute of jsp:include (Section JSP.5.4).

• The page attribute of jsp:forward (Section JSP.5.5).

• The value attribute of jsp:param (Section JSP.5.6).

• The height and width attributes of jsp:plugin (Section JSP.5.7).

• The name attribute of jsp:element (Section JSP.5.14).

JSP.1.14.2 Type Conversions

We describe two cases for type conversions

CORE SYNTAX AND SEMANTICS1-62

JavaServer Pages 2.1 Specification

JSP.1.14.2.1 Conversions from String values

A string value can be used to describe a value of a non-String type through a
conversion. Whether the conversion is possible, and, if so, what is it, depends on
a target type.

String values can be used to assign values to a type that has a PropertyEditor

class as indicated in the JavaBeans specification. When that is the case, the setAs-

Text(String) method is used. A conversion failure arises if the method throws an
IllegalArgumentException.

String values can also be used to assign to the types as listed in Table JSP.1-
11. The conversion applied is that shown in the table.

A conversion failure leads to an error, whether at translation time or request-
time.

Table JSP.1-11 Conversions from string values to target type

Target Type Source String Value

Bean Property As converted by the corresponding PropertyEditor, if any,
using PropertyEditor.setAsText(string-literal) and Proper-
tyEditor.getValue(). If there is no corresponding PropertyEdi-
tor or the PropertyEditor throws an exception, ‘null’ if the
string is empty, otherwise error.

boolean or
Boolean

As indicated in java.lang.Boolean.valueOf(String). This
results in ‘false’ if the String is empty.

byte or Byte As indicated in java.lang.Byte.valueOf(String), or ‘(byte) 0’ if
the string is empty.

char or Character As indicated in String.charAt(0), or ‘(char) 0’ if the string is
empty.

double or Double As indicated in java.lang.Double.valueOf(String), or 0 if the
string is empty.

int or Integer As indicated in java.lang.Integer.valueOf(String), or 0 if the
string is empty.

float or Float As indicated in java.lang.Float.valueOf(String), or 0 if the
string is empty.

long or Long As indicated in java.lang.Long.valueOf(String), or 0 if the
string is empty.

Tag Attribute Interpretation Semantics 1-63

JavaServer Pages 2.1 Specification

These conversions are part of the generic mechanism used to assign values
to attributes of actions: when an attribute value that is not a request-time
attribute is assigned to a given attribute, the conversion described here is used,
using the type of the attribute as the target type. The type of each attribute of the
standard actions is described in this specification, while the types of the
attributes of a custom action are described in its associated Tag Library Descrip-
tor.

A given action may also define additional ways where type/value conver-
sions are used. In particular, Section JSP.5.2, “<jsp:setProperty>” describes the
mechanism used for the setProperty standard action.

JSP.1.14.2.2 Conversions from request-time expressions

Request-time expressions can be assigned to properties of any type. In the
case of scriptlet expressions, no automatic conversions will be performed. In the
case of EL expressions, the rules in Section 1.17, “Type Conversion” of the EL
specification document must be followed.

short or Short As indicated in java.lang.Short.valueOf(String), or 0 if the
string is empty.

Object As if new String(string-literal). This results in new String(““)
if the string is empty.

Table JSP.1-11 Conversions from string values to target type

CORE SYNTAX AND SEMANTICS1-64

JavaServer Pages 2.1 Specification

1-65JavaServer Pages 2.1 Specification

C H A P T E R JSP.2
Expression Language

As of JSP 2.1, the expression languages of JSP 2.0 and JSF 1.1 have been
merged into a single unified expression language (EL 2.1) for the benefit of all
Java based web-tier technologies.

While the expression language is still defined within the JSP 2.1 specification,
it however now has its own independent specification document. This makes the
intent clear that the Expression Language is generally applicable to a variety of
technologies and does not carry a dependency on the JSP specification. Having
the EL defined in its own specification document will also make it easier in the
future should the decision be made to move it into its own JSR. Please consult the
EL specification document for details on the Expression Language supported by
JSP 2.1.

The addition of the EL to the JSP technology facilitates much the writing of
script-less JSP pages. These pages can use EL expressions but can’t use Java
scriptlets, Java expressions, or Java declaration elements. This usage pattern can
be enforced through the scripting-invalid JSP configuration element.

The EL is available in attribute values for standard and custom actions and
within template text.

This chapter describes how the expression language is integrated within the
JSP 2.1 environment.

JSP.2.1 Syntax of expressions in JSP pages: ${} vs #{}

There are two constructs to represent EL expressions: ${expr} and #{expr}.
While the EL parses and evaluates ${} and #{} the same way, additional restrictions
are placed on the usage of these delimiters in JSP pages.

EXPRESSION LANGUAGE1-66

JavaServer Pages 2.1 Specification

An EL expression that is evaluated immediately is represented in JSP with the
syntax ${}, while an EL expression whose evaluation is deferred is represented
with the syntax #{}.

JSP.2.2 Expressions and Template Text

The EL can be used directly in template text, be it inside the body of a custom or
standard actions or in template text outside of any action.Exceptions are if the body
of the tag is tagdependent, or if EL is turned off (usually for compatibility issues)
explicitly through a directive or implicitly; see below.

Only the ${} syntax is allowed for expressions in template text. A translation
error will result if #{} is used in template text unless #{} is turned off via a
backwards compatibility mechanism.

All EL expressions in JSP template text are evaluated as Strings, and are
evaluated by the JSP engine immediately when the page response is rendered.

The semantics of an EL expression are the same as with Java expressions: the
value is computed and inserted into the current output. In cases where escaping is
desired (for example, to help prevent cross-site scripting attacks), the JSTL core
tag <c:out> can be used. For example:

<c:out value=”${anELexpression}” />

The following shows a custom action where two EL expressions are used to
access bean properties:

<c:wombat>
One value is ${bean1.a} and another is ${bean2.a.c}
</c:wombat>

JSP.2.3 Expressions and Attribute Values

EL expressions can be used in any attribute that can accept a run-time expres-
sion, be it a standard action or a custom action. For more details, see the sections on
backward compatibility issues, specifically Section JSP.2.5, “Deactivating EL Eval-
uation” and Section JSP.2.6, “Disabling Scripting Elements”.

For example, the following shows a conditional action that uses the EL to test
whether a property of a bean is less than 3.

Expressions and Attribute Values 1-67

JavaServer Pages 2.1 Specification

<c:if test="${bean1.a < 3}">
...
</c:if>

Note that the normal JSP coercion mechanism already allows for:

 <mytags:if test="true" />

An EL expression that appears in an attribute value is processed differently
depending on the attribute’s type category defined in the TLD. Details are
provided in the sections below.

JSP.2.3.1 Static Attribute

• Defined in the TLD through element <rtexprvalue> set to false.

• Type is always java.lang.String.

• Value must be a String literal (since it is determined at translation time). It is
illegal to specify an expression.

• Type in the TLD is ignored. The String value is converted to the attribute’s tar-
get type (as defined in the tag handler) using the conversions defined in Table
JSP.1-11.

JSP.2.3.2 Dynamic Attribute

• Defined in the TLD through element <rtexprvalue> set to true.

• If type is not specified in the TLD, defaults to java.lang.Object.

• Value can be a String literal, a scriptlet expression, or an EL expression using
the ${} syntax.

• An EL expression is parsed using ExpressionFactory.createValueExpression()

(with an expected type equal to the type specified in the TLD) and the
evaluation of the expression takes place immediately by calling method
getValue() on the ValueExpression. After evaluation of the expression, the val-
ue is coerced to the expected type. The resulting value is passed in to the setter
method for the tag attribute.

EXPRESSION LANGUAGE1-68

JavaServer Pages 2.1 Specification

JSP.2.3.3 Deferred Value

• Defined in the TLD through element <deferred-value>.

• If type is not specified in the TLD, defaults to java.lang.Object.

• Value can be a String literal or an EL expression using the #{} syntax.

• An EL expression is parsed using ExpressionFactory.createValueExpression()

(with an expected type equal to the type specified in the TLD). The expression
is not evaluated. The result of parsing the expression is passed directly to the
setter method of the tag attribute, whose argument type must be javax.el.Value-

Expression. This allows for deferred evaluation of EL expressions. When the
expression is evaluated by the tag handler, the value is coerced to the expected
type. If a static value is provided, it is converted to a ValueExpression where
isLiteralText() returns true

JSP.2.3.4 Deferred Method

• Defined in the TLD through element <deferred-method>.

• If the method signature is not defined in the TLD, it defaults to void method().

• Value can be a String literal or an EL expression using the #{} syntax.

• An EL expression is parsed using ExpressionFactory.createMethodExpres-

sion() (with a method signature equal to the method signature specified in the
TLD). The result of parsing the expression is passed directly to the setter
method of the tag attribute, whose argument type must be javax.el.MethodEx-

pression. This allows for deferred processing of EL expressions that identify a
method to be invoked on an Object.

• A String literal can be provided, as long as the return type of the deferred
method signature is not void. A MethodExpression is created, which when in-
voked, returns the String literal coerced to expected return type (the standard
EL coercion rules (see EL spec document Section 1.17, “Type Conversion”
apply). A translation error occurs if the return type is void or if the string lit-
eral cannot be coerced to the return type of the deferred method signature.

Expressions and Attribute Values 1-69

JavaServer Pages 2.1 Specification

JSP.2.3.5 Dynamic Attribute or Deferred Expression

• Defined in the TLD through elements <rtexprvalue> (see Section JSP.2.3.2,
“Dynamic Attribute”) specified together with <deferred-value> (see
Section JSP.2.3.3, “Deferred Value”) or <deferred-method> (see
Section JSP.2.3.4, “Deferred Method”).

• Value can be a String literal, a scriptlet expression, or an EL expression using
the ${} or #{} syntax. The attribute value is considered a deferred value or a
deferred method if the value is an EL expression using the #{} syntax. It is
considered a dynamic attribute otherwise.

• The attribute value is processed according to its type category as described
above. The only difference is that the setter method argument must be of type
java.lang.Object. The setter method will normally use instanceof to discrimi-
nate whether the attribute value is a dynamic attribute or a deferred value.

JSP.2.3.6 Examples of Using ${} and #{}

As an example, assume a tag with the following three attributes:
■ static - rtexprvalue=false, type=java.lang.String

■ dynamic - rtexprvalue=true, type=java.lang.String

■ deferred - rtexprvalue=true, type=java.lang.ValueExpression

The following tags would yield the following results:

Table JSP.2-1 Examples of Using ${} and #{}

Expression Result

<my:tag static="xyz" /> OK

<my:tag static="${x[y]}" /> ERROR

<my:tag static="#{x[y]}" /> ERROR

<my:tag dynamic="xyz" /> OK

<my:tag dynamic="${x[y]}" /> OK

<my:tag dynamic="#{x[y]}" /> ERROR

<my:tag deferred="xyz" /> OK

EXPRESSION LANGUAGE1-70

JavaServer Pages 2.1 Specification

JSP.2.4 Implicit Objects

There are several implicit objects that are available to EL expressions used in
JSP pages. These objects are always available under these names:

• pageContext - the PageContext object

• pageScope - a Map that maps page-scoped attribute names to their values

• requestScope - a Map that maps request-scoped attribute names to their values

• sessionScope - a Map that maps session-scoped attribute names to their values

• applicationScope - a Map that maps application-scoped attribute names to their
values

• param - a Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name))

• paramValues - a Map that maps parameter names to a String[] of all values for
that parameter (obtained by calling ServletRequest.getParameterValues(String

name))

• header - a Map that maps header names to a single String header value (ob-
tained by calling HttpServletRequest.getHeader(String name))

• headerValues - a Map that maps header names to a String[] of all values for
that header (obtained by calling HttpervletRequest.getHeaders(String))

• cookie - a Map that maps cookie names to a single Cookie object. Cookies are
retrieved according to the semantics of HttpServletRequest.getCookies(). If the
same name is shared by multiple cookies, an implementation must use the
first one encountered in the array of Cookie objects returned by the getCook-

ies() method. However, users of the cookie implicit object must be aware that
the ordering of cookies is currently unspecified in the servlet specification.

• initParam - a Map that maps context initialization parameter names to their
String parameter value (obtained by calling ServletContext.getInitParame-

<my:tag deferred="${x[y]}" /> ERROR

<my:tag deferred="#{x[y]}" /> OK

Table JSP.2-1 Examples of Using ${} and #{}

Expression Result

Deactivating EL Evaluation 1-71

JavaServer Pages 2.1 Specification

ter(String name))

The following table shows some examples of using these implicit objects:

JSP.2.5 Deactivating EL Evaluation

Since the syntactic patterns ${expr} and #{expr} were not reserved in the JSP
specifications before JSP 2.0, there may be situations where such patterns appear but
the intention is not to activate EL expression evaluation but rather to pass through
the pattern verbatim. To address this, the EL evaluation machinery can be deacti-
vated as indicated in Section JSP.3.3.2, “Deactivating EL Evaluation”.

JSP.2.6 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodology where scripting elements are not allowed. See
Section JSP.3.3.3, “Disabling Scripting Elements” for more details.

JSP.2.7 Invalid EL expressions

JSP containers are required to produce a translation error when a syntactically
invalid EL expression is encountered in an attribute value or within template text.
The syntax of an EL expression is described in detail in the EL specification docu-
ment.

Table JSP.2-2 Examples of Using Implicit Objects

Expression Result

${pageContext.request.requestURI} The request's URI (obtained from HttpS-
ervletRequest)

${sessionScope.profile} The session-scoped attribute named pro-
file (null if not found)

${param.productId} The String value of the productId
parameter, or null if not found

${paramValues.productId} The String[] containing all values of the
productId parameter, or null if not found

EXPRESSION LANGUAGE1-72

JavaServer Pages 2.1 Specification

JSP.2.8 Errors, Warnings, Default Values

JSP pages are mostly used in presentation, and in that usage, experience sug-
gests that it is most important to be able to provide as good a presentation as possi-
ble, even when there are simple errors in the page. To meet this requirement, the EL
does not provide warnings, just default values and errors. Default values are type-
correct values that are assigned to a subexpression when there is some problem. An
error is an exception thrown (to be handled by the standard JSP machinery).

JSP.2.9 Resolution of Variables and their Properties

The EL API provides a generalized mechanism, an ELResolver, implemented
by the JSP container and which defines the rules that govern the resolution of
variables and object properties.

The ELResolver shown in FIGURE 2-3 is passed to all EL expressions that
appear in a JSP page or tag file. It is an instance of javax.el.CompositeELResolver

that contains the following component ELResolvers, in order:

1. jsp.ImplicitObjectELResolver

Resolves the implicit objects mentioned in Section JSP.2.4

2. All ELResolvers added via JspApplicationContext.addELResolver(), in the
same order in which they were registered.

This itself can take the form of a el.CompositeELResolver. This will include
the ELResolver registered by Faces.

3. el.MapELResolver - constructed in read/write mode.

4. el.ResourceBundleELResolver

5. el.ListELResolver - constructed in read/write mode.

6. el.ArrayELResolver - constructed in read/write mode.

7. el.BeanELResolver - constructed in read/write mode.

Handles all cases where base != null

8. jsp.ScopedAttributeELResolver

Handles all cases where base == null.
Provides a map for other identifiers by looking up its value as an attribute,
according to the behavior of PageContext.findAttribute(String) on the page-
Context object. For example:

Functions 1-73

JavaServer Pages 2.1 Specification

${product}

This expression will look for the attribute named product, searching the page,
request, session, and application scopes, and will return its value. If the
attribute is not found, null is returned.

FIGURE 2-3 JSP Resolvers Hierarchy

JSP.2.10 Functions

The EL has qualified functions, reusing the notion of qualification from XML
namespaces (and attributes), XSL functions, and JSP custom actions. Functions

EXPRESSION LANGUAGE1-74

JavaServer Pages 2.1 Specification

are mapped to public static methods in Java classes. In JSP, the map is specified in
the TLD.

Function mapping information is bound into the ValueExpression or Metho-

dExpression at parse-time and is serialized along with the state of the expression.
No function mapper needs to be provided at evaluation time.

JSP.2.10.1 Invocation Syntax

The full syntax is that of qualified n-ary functions:

ns:f(a1,a2, ..., an)

As with the rest of EL, this element can appear in attributes and directly in
template text.

The prefix ns must match the prefix of a tag library that contains a function
whose name and signature matches the function being invoked (f), or a translation
error must occur. If the prefix is omitted, the tag library associated with the default
namespace is used (this is only possible in JSP documents).

In the following standard syntax example, func1 is associated with some-

taglib:

<%@ taglib prefix=”some” uri=”http://acme.com/some-taglib” %>
${some:func1(true)}

In the following JSP document example, both func2 and func3 are associated
with default-taglib:

<some:tag xmlns=”http://acme.com/default-taglib”
xmlns:some=”http://acme.com/some-taglib”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<some:other value=”${func2(true)}”>
${func3(true)}

</some:other>
</some:tag>

JSP.2.10.2 Tag Library Descriptor Information

Each tag library may include zero or more n-ary (static) functions. The Tag
Library Descriptor (TLD) associated with a tag library lists the functions.

Each such function is given a name (as seen in the EL), and a static method in
a specific class that will implement the function. The class specified in the TLD
must be a public class, and must be specified using a fully-qualified class name

Functions 1-75

JavaServer Pages 2.1 Specification

(including packages). The specified method must be a public static method in the
specified class, and must be specified using a fully-qualified return type followed
by the method name, followed by the fully-qualified argument types in
parenthesis, separated by commas (see the XML Schema in Appendix , “Tag
Library Descriptor Formats” for a full description of this syntax). Failure to satisfy
these requirements shall result in a translation-time error.

A tag library can have only one function element in the same tag library with
the same value for their name element. If two functions have the same name, a
translation-time error shall be generated.

Reference the function element in Section JSP.C.1, “XML Schema for TLD,
JSP 2.1” for how to specify a function in the TLD.

JSP.2.10.3 Example

The following TLD fragment describes a function with name nickname that is
intended to fetch the nickname of the user:

<taglib>
...
<function>

<name>nickname</name>
<function-class>mypkg.MyFunctions</function-class>
<function-signature>

java.lang.String nickName(java.lang.String)
</function-signature>

</function>
</taglib>

The following EL fragment shows the invocation of the function:

<h2>Dear ${my:nickname(user)}</h2>

JSP.2.10.4 Semantics

• If the function has no prefix, the default namespace is used. If the function has
a prefix, assume the namespace as that associated with the prefix.

Let ns be the namespace associated with the function, and f be the name of the
function.

• Locate the TLD associated with ns. If none can be found, this shall be a trans-
lation-time error.

EXPRESSION LANGUAGE1-76

JavaServer Pages 2.1 Specification

• Locate the function element with a name subelement with value f in that TLD.
If none can be found, this shall be a translation-time error.

• Locate the public class with name equal to the value of the function-class ele-
ment. Locate the public static method with name and signature equal to the
value of the function-signature element. If any of these don’t exist, a transla-
tion-time error shall occur..

• Evaluate each argument to the corresponding type indicated in the signature

• Evaluate the public static Java method. The resulting value is the value re-
turned by the method evaluation, or null if the Java method is declared to re-
turn void. If an exception is thrown during the method evaluation, the
exception must be wrapped in an ELException and the ELException must be
thrown.

1-77JavaServer Pages 2.1 Specification

C H A P T E R JSP.3
JSP Configuration

This chapter describes the JSP configuration information, which is specified
in the Web Application Deployment Descriptor in WEB-INF/web.xml. As of Servlet
2.4, the Web Application Deployment Descriptor is defined using XML Schema,
and imports the elements described in (PENDING) Section JSP.B.2, “XML Schema
for JSP 2.0 Deployment Descriptor”. See that section for the details on how to spec-
ify JSP configuration information in a Web Application.

JSP.3.1 JSP Configuration Information in web.xml

A Web Application can include general JSP configuration information in its
web.xml file that is to be used by the JSP container. The information is described
through the jsp-config element and its subelements.

The jsp-config element is a subelement of web-app that is used to provide
global configuration information for the JSP files in a Web Application. A jsp-

config has two subelements: taglib and jsp-property-group, defining the taglib
mapping and groups of JSP files respectively.

JSP.3.2 Taglib Map

The web.xml file can include an explicit taglib map between URIs and TLD
resource paths described using taglib elements in the Web Application Deployment
descriptor.

The taglib element is a subelement of jsp-config that can be used to provide
information on a tag library that is used by a JSP page within the Web
Application. The taglib element has two subelements: taglib-uri and taglib-location.

JSP CONFIGURATION1-78

JavaServer Pages 2.1 Specification

A taglib-uri element describes a URI identifying a tag library used in the web
application. The body of the taglib-uri element may be either an absolute URI
specification, or a relative URI as in Section JSP.1.2.1, “Relative URL Specifi-
cations”. There should be no entries in web.xml with the same taglib-uri value.

A taglib-location element contains a resource location (as indicated in
Section JSP.1.2.1, “Relative URL Specifications”) of the Tag Library Description
File for the tag library.

JSP.3.3 JSP Property Groups

A JSP property group is a collection of properties that apply to a set of files that
represent JSP pages. These properties are defined in one or more jsp-property-group

elements in the Web Application deployment descriptor.
Most properties defined in a JSP property group apply to an entire translation

unit, that is, the requested JSP file that is matched by its URL pattern and all the
files it includes via the include directive. The exception is the page-encoding

property, which applies separately to each JSP file matched by its URL pattern.
The applicability of a JSP property group is defined through one or more URL

patterns. URL patterns use the same syntax as defined in Chapter SRV.11 of the
Servlet 2.5 specification, but are bound at translation time. All the properties in
the group apply to the resources in the Web Application that match any of the
URL patterns. There is an implicit property: that of being a JSP file. JSP Property
Groups do not affect tag files.

If a resource matches a URL pattern in both a <servlet-mapping> and a <jsp-

property-group>, the pattern that is most specific applies (following the same rules
as in the Servlet specification). If the URL patterns are identical, the <jsp-property-

group> takes precedence over the <servlet-mapping>. If at least one <jsp-property-

group> contains the most specific matching URL pattern, the resource is
considered to be a JSP file, and the properties in that <jsp-property-group> apply.
In addition, if a resource is considered to be a JSP file, all include-prelude and
include-coda properties apply from all the <jsp-property-group> elements with
matching URL patterns (see Section JSP.3.3.5).

JSP.3.3.1 JSP Property Groups

A jsp-property-group is a subelement of jsp-config. The properties that can
currently be described in a jsp-property-group include:

JSP Property Groups 1-79

JavaServer Pages 2.1 Specification

• Indicate that a resource is a JSP file (implicit).

• Control disabling of EL evaluation.

• Control disabling of Scripting elements.

• Indicate page Encoding information.

• Prelude and Coda automatic includes.

• Indicate that a resource is a JSP document.

• Indicate that the deferred syntax (initiated by the character sequence #{) is al-
lowed as a String literal.

• Control handling of whitespaces in template text.

JSP.3.3.2 Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications
before JSP 2.0, and the syntactic pattern #{expr} was not reserved before JSP 2.1,
there may be situations where such patterns appear but the intention is not to acti-
vate EL expression evaluation but rather to pass through the pattern verbatim. To
address this, the EL evaluation machinery can be deactivated as indicated in this
section.

Each JSP page has a default setting as to whether to ignore EL expressions.
When ignored, the expression is passed through verbatim. The default setting does
not apply to tag files, which always default to evaluating expressions.

The default mode for JSP pages in a Web Application delivered using a
web.xml using the Servlet 2.3 or earlier format is to ignore EL expressions; this
provides for backward compatibility.

The default mode for JSP pages in a Web Application delivered using a
web.xml using the Servlet 2.4 format is to evaluate EL expressions with the ${}
syntax. Expressions using the #{} are evaluated starting with JSP 2.1. See
Section , “Backwards Compatibility with JSP 2.0” for more details on the
evaluation of #{} expressions.

The default mode can be explicitly changed by setting the value of the el-

ignored element. The el-ignored element is a subelement of jsp-property-group (see
Section JSP.3.3.1, “JSP Property Groups”). It has no subelements. Its valid values
are true and false.

For example, the following web.xml fragment defines a group that deactivates
EL evaluation for all JSP pages delivered using the .jsp extension:

JSP CONFIGURATION1-80

JavaServer Pages 2.1 Specification

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

Page authors can override the default mode through the isELIgnored attribute
of the page directive. For tag files, there is no default, but the isELIgnored attribute
of the tag directive can be used to control the EL evaluation settings.

Table JSP.3-1 summarizes the EL evaluation settings for JSP pages, and their
meanings:

Table JSP.3-2 summarizes the EL evaluation settings for tag files, and their
meanings:

Table JSP.3-1 EL Evaluation Settings for JSP Pages

JSP Configuration
<el-ignored>

Page Directive
isELIgnored EL Encountered

unspecified unspecified Ignored if <= 2.3 web.xml
Evaluated otherwise.

false unspecified Evaluated

true unspecified Ignored

don’t care false Evaluated

don’t care true Ignored

Table JSP.3-2 EL Evaluation Settings for Tag Files

Tag Directive
isELIgnored EL Encountered

unspecified Evaluated

false Evaluated

true Ignored

JSP Property Groups 1-81

JavaServer Pages 2.1 Specification

The EL evaluation setting for a translation unit also affects whether the \$ and
\# quote sequences are enabled for template text and attribute values in a JSP
page, document, or tag file. When EL evaluation is disabled, \$ and \# will not be
recognized as quotes, whereas when EL evaluation is enabled, \$ and \# will be
recognized as quotes for $ and # respectively. See Section JSP.1.6, “Quoting and
Escape Conventions” and Section JSP.6.2.2, “Overview of Syntax of JSP
Documents” for details.

JSP.3.3.3 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodology where scripting elements are not allowed. Previ-
ous versions of JSP enabled this through the notion of a TagLibraryValidator that
would verify that the elements are not present. JSP 2.0 makes this slightly easier
through a JSP configuration element.

The scripting-invalid element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are true and false. Scripting is enabled by
default. Disabling scripting elements can be done by setting the scripting-invalid

element to true in the JSP configuration.
For example, the following web.xml fragment defines a group that disables

scripting elements for all JSP pages delivered using the .jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>

Table JSP.3-3 summarizes the scripting settings and their meanings:

Table JSP.3-3 Scripting Settings

JSP Configuration
<scripting-invalid> Scripting Encountered

unspecified Valid

false Valid

true Translation Error

JSP CONFIGURATION1-82

JavaServer Pages 2.1 Specification

JSP.3.3.4 Declaring Page Encodings

The JSP configuration element page-encoding can be used to easily set the
pageEncoding property of a group of JSP pages defined using the jsp-property-

group element. This is only needed for pages in standard syntax, since for
documents in XML syntax the page encoding is determined as described in
section 4.3.3 and appendix F.1 of the XML specification.

The page-encoding element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are those of the pageEncoding page
directive. It is a translation-time error to name different encodings in the pageEn-

coding attribute of the page directive of a JSP page and in a JSP configuration
element matching the page. It is also a translation-time error to name different
encodings in the prolog / text declaration of the document in XML syntax and in a
JSP configuration element matching the document. It is legal to name the same
encoding through multiple mechanisms.

For example, the following web.xml fragment defines a group that explicitly
assigns Shift_JIS to all JSP pages and included JSP segments in the /ja

subdirectory of the web application:

<jsp-property-group>
<url-pattern>/ja/*</url-pattern>
<page-encoding>Shift_JIS</page-encoding>

</jsp-property-group>

JSP.3.3.5 Defining Implicit Includes

The include-prelude element is an optional subelement of jsp-property-group.
It has no subelements. Its value is a context-relative path that must correspond to
an element in the Web Application. When the element is present, the given path
will be automatically included (as in an include directive) at the beginning of the
JSP page in the jsp-property-group. When there are more than one include-prelude

element in a group, they are to be included in the order they appear. When more
than one jsp-property-group applies to a JSP page, the corresponding include-
prelude elements will be processed in the same order as they appear in the JSP
configuration section of web.xml.

The include-coda element is an optional subelement of jsp-property-group. It
has no subelements. Its value is a context-relative path that must correspond to an
element in the Web Application. When the element is present, the given path will
be automatically included (as in an include directive) at the end of the JSP page in
the jsp-property-group. When there are more than one include-coda element in a
group, they are to be included in the order they appear. When more than one jsp-

JSP Property Groups 1-83

JavaServer Pages 2.1 Specification

property-group applies to a JSP page, the corresponding include-coda elements
will be processed in the same order as they appear in the JSP configuration section
of web.xml. Note that these semantics are in contrast to the way url-patterns are
matched for other configuration elements.

Preludes and codas follow the same rules as statically included JSP segments.
In particular, start tags and end tags must appear in the same file (see
Section JSP.1.3.3, “Start and End Tags”).

For example, the following web.xml fragment defines two groups. Together
they indicate that everything in directory /two/ have /WEB-INF/jspf/prelude1.jspf

and /WEB-INF/jspf/prelude2.jspf at the beginning and /WEB-INF/jspf/coda1.jspf and
/WEB-INF/jspf/coda2.jspf at the end, in that order, while other .jsp files only have
/WEB-INF/jspf/prelude1.jspf at the beginning and /WEB-INF/jspf/coda1.jspf at the
end.

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude1.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/coda1.jspf</include-coda>

</jsp-property-group>

<jsp-property-group>
<url-pattern>/two/*</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude2.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/coda2.jspf</include-coda>

</jsp-property-group>

JSP.3.3.6 Denoting XML Documents

The JSP configuration element is-xml can be used to denote that a group of
files are JSP documents, and thus must be interpreted as XML documents.

The is-xml element is a subelement of jsp-property-group (see 3.3.1). It has no
subelements. Its valid values are true and false. When false, the files in the
associated property group are assumed to not be JSP documents, unless there is
another property group that indicates otherwise. The files are still considered to be
JSP pages due to the implicit property given by the <jsp-property-group> element.

For example, the following web.xml fragment defines two groups. The first
one indicates that those files with extension .jspx, which is the default extension
for JSP documents, are instead just plain JSP pages. The last group indicates that
files with extension .svg are actually JSP documents (which most likely are
generating SVG files).

JSP CONFIGURATION1-84

JavaServer Pages 2.1 Specification

<jsp-property-group>
<url-pattern>*.jspx</url-pattern>
<is-xml>false</is-xml>

</jsp-property-group>

<jsp-property-group>
<url-pattern>*.svg</url-pattern>
<is-xml>true</is-xml>

</jsp-property-group>

JSP.3.3.7 Deferred Syntax (character sequence #{)

As of JSP 2.1, the character sequence #{ is reserved for EL expressions.
Consequently, a translation error occurs if the #{ character sequence is used as a
String literal (in template text of a JSP 2.1+ container or as an attribute value for a
tag-library where jsp-version is 2.1+).

The deferred-syntax-allowed-as-literal element is a subelement of jsp-property-

group (See Section JSP.3.3.1, “JSP Property Groups”). It has no subelements. Its
valid values are true and false, and it is disabled (false) by default. Allowing the
character sequence #{ when used as a String literal can be done by setting the
deferred-syntax-allowed-as-literal element to true in the JSP configuration.

Page authors can override the default value through the deferredSyntaxAl-

lowedAsLiteral attribute of the page directive (see Section JSP.1.10, “Directives”).
See also “Backwards Compatibility with JSP 2.0” for more information.

JSP.3.3.8 Removing whitespaces from template text

Whitespaces in template text of a JSP page are preserved by default (See
Section JSP.1.3.8, “White Space”). Unfortunately, this means that unwanted
extraneous whitespaces often make it into the response output.

For example, the following code snippet (where ↵ represents the end-of-line
character(s))

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>↵
<%@ taglib prefix=”x” uri=”http://java.sun.com/jsp/jstl/xml” %>↵
Hello World!↵

would generate the following output:

↵
↵
Hello World!↵

JSP Property Groups 1-85

JavaServer Pages 2.1 Specification

For JSP pages (standard syntax), the JSP configuration element trim-directive-

whitespaces can be used to indicate that template text containing only whitespaces
must be removed from the response output. It has no effect on JSP documents
(XML syntax).In the example above, the first ↵ represents template text that
contains only whitespaces and would therefore be removed. ↵HelloWorld!↵
represents template text that does not contain only whitespaces and would
therefore be preserved as-is.

↵
Hello World!↵

The trim-directive-whitespaces element is a subelement of jsp-property-group

(See Section JSP.3.3.1, “JSP Property Groups”). It has no subelements. Its valid
values are true and false, and it is disabled (false) by default. Enabling the
trimming of whitespaces can be done by setting the trim-directive-whitespaces

element to true in the JSP configuration.
Page authors can override the default value through the trimDirective-

Whitespaces attribute of the page directive (see Section JSP.1.10, “Directives”).

JSP CONFIGURATION1-86

JavaServer Pages 2.1 Specification

1-87JavaServer Pages 2.1 Specification

C H A P T E R JSP.4
Internationalization Issues

This chapter describes requirements for internationalization with
JavaServer Pages.

The JSP specification by itself does not provide a complete platform for
internationalization. It is complemented by functionality provided by the
underlying Java Standard Edition platform, the Servlet APIs, and by tag libraries
such as the JSP Standard Tag Library (JSTL) with its collection of
internationalization and formatting actions. For complete information, see the
respective specifications.

Primarily, this specification addresses the issues of character encodings.
The Java programming language represents characters internally using the

Unicode character encoding, which provides support for most languages. As of
J2SE 1.4, the Unicode 3.0 character set is supported. For storage and transmission
over networks, however, many other character encodings are used. The J2SE
platform therefore also supports character conversion to and from other character
encodings. Any Java runtime must support the Unicode transformations UTF-8,
UTF-16BE, and UTF-16LE as well as the ISO-8859-1 (Latin-1) character
encoding, but most implementations support many more. The character encodings
supported by Sun’s Java 2 Runtime Environment version 1.3 and version 1.4
respectively are described at:

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

In JSP pages and in JSP configuration elements, character encodings are
named using the names defined in the IANA charset registry:

http://www.iana.org/assignments/character-sets

INTERNATIONALIZATION ISSUES1-88

JavaServer Pages 2.1 Specification

JSP.4.1 Page Character Encoding

The page character encoding is the character encoding in which the JSP page or
tag file itself is encoded. The character encoding is determined for each file sepa-
rately, even if one file includes another using the include directive
(Section JSP.1.10.3, “The include Directive”). A detailed algorithm for determining
the page character encoding of a JSP page or tag file can be found in
Appendix JSP.D, “Page Encoding Detection”.

JSP.4.1.1 Standard Syntax

For JSP pages in standard syntax, the page character encoding is determined
from the following sources:

• A byte order mark (BOM)

• A JSP configuration element page-encoding value whose URL pattern match-
es the page.

• The pageEncoding attribute of the page directive of the page. It is a transla-
tion-time error to name different encodings in the pageEncoding attribute of
the page directive of a JSP page and in a JSP configuration element whose
URL pattern matches the page.

• The charset value of the contentType attribute of the page directive. This is
used to determine the page character encoding if neither a JSP configuration
element page-encoding nor the pageEncoding attribute are provided.

• If none of the above is provided, ISO-8859-1 is used as the default character
encoding.

For tag files in standard syntax, the page character encoding is determined
from a BOM or the pageEncoding attribute of the tag directive of the tag file (in
this precedence order), or is ISO-8859-1 if neither is specified.

A BOM consists of the Unicode character code U+FEFF at the beginning of a
data stream, where it is used to define the byte order and encoding form of
unmarked plaintext files.

The exact byte representation of the BOM depends on the particular encoding
of the text file, as follows:

Page Character Encoding 1-89

JavaServer Pages 2.1 Specification

Table JSP.4-1 Byte representations of the BOM

 The above byte sequences have been reserved to identify a BOM at the
beginning of JSP pages in standard syntax, and will not appear in the page's
output.

The pageEncoding and contentType attributes determine the page character
encoding of only the file that physically contains them. Parsers are only required
to take these attributes into consideration for character encoding detection if the
directive appears at the beginning of the page or tag file and if the character
encoding is an extension of ASCII, that is, if byte values 0 to 127 have the same
meaning as in ASCII, at least until the attributes are found. For character
encodings where this is not the case (including UTF-16 and EBCDIC-based
encodings), the JSP configuration element page-encoding or a BOM should be
used.

When using a BOM, it is legal to describe the character encoding in a JSP
configuration element page-encoding or a pageEncoding attribute of the page
directive of the page, as long as they are consistent.

JSP.4.1.2 XML Syntax

For JSP documents and tag files in XML syntax, the page character encoding
is determined as described in section 4.3.3 and appendix F.1 of the XML
specification.

For JSP documents in XML syntax, it is legal to also describe the character
encoding in a JSP configuration element page-encoding or a pageEncoding

attribute of the page directive of the document, as long as they are consistent. It is
a translation-time error to name different encodings in two or more of the
following: the XML prolog / text declaration of a JSP document, the pageEncod-

ing attribute of the page directive of the JSP document, and in a JSP configuration
element whose URL pattern matches the document.

Bytes Encoding Form

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

EF BB BF UTF-8

INTERNATIONALIZATION ISSUES1-90

JavaServer Pages 2.1 Specification

Note that for tag files in XML syntax, it is illegal for the tag directive to
include a pageEncoding attribute: the encoding is inferred solely by using the
conventions for XML documents.

A JSP container must raise a translation-time error if an unsupported page
character encoding is requested.

JSP.4.2 Response Character Encoding

The response character encoding is the character encoding of the response gen-
erated from a JSP page, if that response is in the form of text. It is primarily man-
aged as the javax.servlet.ServletResponse object’s characterEncoding property.

The JSP container determines an initial response character encoding along
with the initial content type for a JSP page and calls ServletResponse.setContent-

Type() with this information before processing the page. JSP pages can set initial
content type and initial response character encoding using the contentType

attribute of the page directive.
The initial response content type is set to the TYPE value of the contentType

attribute of the page directive. If the page doesn’t provide this attribute, the initial
content type is “text/html” for JSP pages in standard syntax and “text/xml” for JSP
documents in XML syntax.

The initial response character encoding is set to the CHARSET value of the
contentType attribute of the page directive. If the page doesn’t provide this
attribute or the attribute doesn’t have a CHARSET value, the initial response
character encoding is determined as follows:

• For documents in XML syntax, it is UTF-8.

• For JSP pages in standard syntax, it is the character encoding specified by the
BOM, by the pageEncoding attribute of the page directive, or by a JSP config-
uration element page-encoding whose URL pattern matches the page. Only the
character encoding specified for the requested page is used; the encodings of
files included via the include directive are not taken into consideration. If
there’s no such specification, no initial response character encoding is passed
to ServletResponse.setContentType() - the ServletResponse object’s default,
ISO-8859-1, is used.

After the initial response character encoding has been set, the JSP page’s
content can dynamically modify it by calling the ServletResponse object’s set-

CharacterEncoding and setLocale methods directly or indirectly. A number of

Request Character Encoding 1-91

JavaServer Pages 2.1 Specification

JSTL internationalization and formatting actions call ServletResponse.setLo-

cale(), which may affect the response character encoding. See the Servlet and
JSTL specifications for more information.

Note that the response character encoding can only be changed until the
response is committed. Data is sent to the response stream on buffer flushes for
buffered pages, or on encountering the first content (beware of whitespace) on
unbuffered pages. Whitespace is notoriously tricky for JSP Pages in JSP syntax,
but much more manageable for JSP Documents in XML syntax.

JSP.4.3 Request Character Encoding

The request character encoding is the character encoding in which parameters
in an incoming request are interpreted. It is primarily managed as the ServletRe-

quest object’s characterEncoding property.
The JSP specification doesn’t provide functionality to handle the request

character encoding directly. To control the request character encoding from JSP
pages without embedded Java code, the JSTL <fmt:requestEncoding> can be used.

JSP.4.4 XML View Character Encoding

The XML view character encoding is the character encoding used for external-
izing the XML view of a JSP page or tag file.

The XML view character encoding is always UTF-8.

JSP.4.5 Delivering Localized Content

The JSP specification does not mandate any specific approach for structuring
localized content, and different approaches are possible. Two common approaches
are to use a template taglib and pull localized strings from a resource repository, or
to use-per-locale JSP pages. Each approach has benefits and drawbacks. The JSTL
internationalization and formatting actions provide support for retrieving localized
content from resource bundles and thus support the first approach. Some users have
been using transformations on JSP documents to do simple replacement of elements
by localized strings, thus maintaining JSP syntax with no performance cost at run-
time. Combinations of these approaches also make sense.

INTERNATIONALIZATION ISSUES1-92

JavaServer Pages 2.1 Specification

1-93JavaServer Pages 2.1 Specification

C H A P T E R JSP.5
Standard Actions

This chapter describes the standard actions of JavaServer Pages 2.1 (JSP 2.1).
Standard actions are represented using XML elements with a prefix of jsp (though
that prefix can be redefined in the XML syntax). A translation error will result if the
JSP prefix is used for an element that is not a standard action.

JSP.5.1 <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly
declared scripting variable of the same id.

When a <jsp:useBean> action is used in an scriptless page, or in an scriptless
context (as in the body of an action so indicated), there are no Java scripting
variables created but instead an EL variable is created.

The jsp:useBean action is quite flexible; its exact semantics depends on the
attributes given. The basic semantic tries to find an existing object using id and
scope. If the object is not found it will attempt to create the object using the other
attributes.

It is also possible to use this action to give a local name to an object defined
elsewhere, as in another JSP page or in a servlet. This can be done by using the
type attribute and not providing class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide
both class and beanName. If type and class are present, class must be assignable
to type (in the Java platform sense). For it not to be assignable is a translation-
time error.

The attribute beanName specifies the name of a Bean, as specified in the
JavaBeans specification. It is used as an argument to the instantiate method in the
java.beans.Beans class. It must be of the form a.b.c, which may be either a class,

STANDARD ACTIONS1-94

JavaServer Pages 2.1 Specification

or the name of a resource of the form a/b/c.ser that will be resolved in the current
ClassLoader. If this is not true, a request-time exception, as indicated in the
semantics of the instantiate method will be raised. The value of this attribute can
be a request-time attribute expression.

The id Attribute

The id=”name” attribute/value tuple in a jsp:useBean action has special meaning
to a JSP container, at page translation time and at client request processing time. In
particular:

• the name must be unique within the translation unit, and identifies the particu-
lar element in which it appears to the JSP container and page.

Duplicate id’s found in the same translation unit shall result in a fatal transla-
tion error.

• The JSP container will associate an object (a JavaBean component) with the
named value and accessed via that name in various contexts through the page-

context object described later in this specification.

The name is also used to expose a variable (name) in the page’s scripting lan-
guage environment. The scope of the scripting language variable is dependent
upon the scoping rules and capabilities of the scripting language used in the
page.
Note that this implies the name value syntax must comply with the variable
naming syntax rules of the scripting language used in the page. Chapter JSP.9,
“Scripting” provides details for the case where the language attribute is java.

An example of the scope rules just mentioned is shown next:

<jsp:useBean> 1-95

JavaServer Pages 2.1 Specification

<% { // introduce a new block %>
...
<jsp:useBean id=”customer” class=”com.myco.Customer” />

<%
/*
 * the tag above creates or obtains the Customer Bean
 * reference, associates it with the name “customer” in the
 * PageContext, and declares a Java programming language
 * variable of the same name initialized to the object reference
 * in this block’s scope.
 */
%>
...
<%= customer.getName(); %>
...

<% } // close the block %>

<%
// the variable customer is out of scope now but
// the object is still valid (and accessible via pageContext)
%>

The scope Attribute

The scope=”page|request|session|application” attribute/value tuple is associ-
ated with, and modifies the behavior of the id attribute described above (it has
both translation time and client request processing time semantics). In particu-
lar it describes the namespace, the implicit lifecycle of the object reference
associated with the name, and the APIs used to access this association. For all
scopes, it is illegal to change the instance object so associated, such that its
new runtime type is a subset of the type(s) of the object previously so associ-
ated. See Section JSP.1.8.2, “Objects and Scopes” for details on the available
scopes.

Semantics

The actions performed in a jsp:useBean action are:

1. An attempt to locate an object based on the attribute values id and scope. The
inspection is done synchronized per scope namespace to avoid non-determin-
istic behavior.

STANDARD ACTIONS1-96

JavaServer Pages 2.1 Specification

2. A scripting language variable of the specified type (if given) or class (if type is
not given) is defined with the given id in the current lexical scope of the script-
ing language. The type attribute should be used to specify a Java type that can-
not be instantiated as a JavaBean (i.e. a Java type that is an abstract class,
interface, or a class with no public no-args constructor). If the class attribute is
used for a Java type that cannot be instantiated as a JavaBean, the container
may consider the page invalid, and is recommended to (but not required to)
produce a fatal translation error at translation time, or a java.lang.Instantiation-
Exception at request time. Similarly, if either type or class specify a type that
can not be found, the container may consider the page invalid, and is recom-
mended to (but not required to) produce a fatal translation error at translation
time, or a java.lang.ClassNotFoundException at request time.

3. If the object is found, the variable’s value is initialized with a reference to the
located object, cast to the specified type. If the cast fails, a java.lang.ClassCas-
tException shall occur. This completes the processing of this jsp:useBean ac-
tion.

4. If the jsp:useBean action had a non-empty body it is ignored. This completes
the processing of this jsp:useBean action.

5. If the object is not found in the specified scope and neither class nor beanName
are given, a java.lang.InstantiationException shall occur. This completes the
processing of this jsp:useBean action.

6. If the object is not found in the specified scope, and the class specified names
a non-abstract class that defines a public no-args constructor, then the class is
instantiated. The new object reference is associated with the scripting variable
and with the specified name in the specified scope using the appropriate scope
dependent association mechanism (see PageContext). After this, step 8 is per-
formed.

If the object is not found, and the class is either abstract, an interface, or no pub-
lic no-args constructor is defined therein, then a java.lang.InstantiationExcep-
tion shall occur. This completes the processing of this jsp:useBean action.

7. If the object is not found in the specified scope; and beanName is given, then
the method instantiate of java.beans.Beans will be invoked with the Class-
Loader of the servlet object and the beanName as arguments. If the method suc-
ceeds, the new object reference is associated the with the scripting variable and
with the specified name in the specified scope using the appropriate scope de-
pendent association mechanism (see PageContext). After this, step 8 is per-
formed.

8. If the jsp:useBean action has a non-empty body, the body is processed. The
variable is initialized and available within the scope of the body. The text of

<jsp:useBean> 1-97

JavaServer Pages 2.1 Specification

the body is treated as elsewhere. Any template text will be passed through to
the out stream. Scriptlets and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created
instance. In that case the body will likely contain jsp:setProperty actions and
scriptlets that are evaluated. This completes the processing of this useBean

action.

Examples

In the following example, a Bean with name connection of type
com.myco.myapp.Connection is available after actions on this element, either
because it was already created and found, or because it is newly created.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection” />

In the next example, the timeout property is set to 33 if the Bean was instanti-
ated.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection”>
<jsp:setProperty name=”connection” property=”timeout” value=”33”>

</jsp:useBean>

In the final example, the object should have been present in the session. If so,
it is given the local name wombat with WombatType. A ClassCastException
may be raised if the object is of the wrong class, and an InstantiationException
may be raised if the object is not defined.

<jsp:useBean id=”wombat” type=”my.WombatType” scope=”session”/>

Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec />

typeSpec ::= class=”className” |
class=”className” type=”typeName” |
type=”typeName” class=”className” |
beanName=”beanName” type=”typeName” |
type=”typeName” beanName=”beanName” |
type=”typeName”

If the action has a body, it is of the form:

STANDARD ACTIONS1-98

JavaServer Pages 2.1 Specification

<jsp:useBean id="name" scope="page|request|session|application" typeSpec >
body

</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is
created. Typically, the body will contain either scriptlets or jsp:setProperty tags
that will be used to modify the newly created object, but the contents of the body
are not restricted.

The <jsp:useBean> tag has the following attributes:

Table JSP.5-1 jsp:useBean Attributes

id The name used to identify the object instance in the
specified scope’s namespace, and also the scripting variable
name declared and initialized with that object reference.
The name specified is case sensitive and shall conform to
the current scripting language variable-naming
conventions.

scope The scope within which the reference is available. The
default value is page. See the description of the scope
attribute defined earlier herein. A translation error must
occur if scope is not one of “page”, “request”, “session” or
“application”.

class The fully qualified name of the class that defines the
implementation of the object. The class name is case
sensitive.
If the class and beanName attributes are not specified the
object must be present in the given scope.

beanName The name of a bean, as expected by the instantiate method
of the java.beans.Beans class.
This attribute can accept a request-time attribute expression
as a value.

<jsp:setProperty> 1-99

JavaServer Pages 2.1 Specification

JSP.5.2 <jsp:setProperty>

The jsp:setProperty action sets the values of properties in a bean. The name

attribute that denotes the bean must be defined before this action appears.
There are two variants of the jsp:setProperty action. Both variants set the

values of one or more properties in the bean based on the type of the properties.
The usual bean introspection is done to discover what properties are present, and,
for each, its name, whether it is simple or indexed, its type, and the setter and get-

ter methods. Introspection also indicates if a given property type has a PropertyEd-

itor class.
Properties in a Bean can be set from one or more parameters in the request

object, from a String constant, or from a computed request-time expression.
Simple and indexed properties can be set using jsp:setProperty.

When assigning from a parameter in the request object, the conversions
described in Section JSP.1.14.2.1, “Conversions from String values” are applied,
using the target property to determine the target type.

When assigning from a value given as a String constant, the conversions
described in Section JSP.1.14.2.1, “Conversions from String values” are applied,
using the target property to determine the target type.

When assigning from a value given as a request-time attribute, no type
conversions are applied if a scripting expression is used, as indicated in
Section JSP.1.14.2.2, “Conversions from request-time expressions”. If an EL

type If specified, it defines the type of the scripting variable
defined.
This allows the type of the scripting variable to be distinct
from, but related to, the type of the implementation class
specified.
The type is required to be either the class itself, a superclass
of the class, or an interface implemented by the class
specified.
The object referenced is required to be of this type,
otherwise a java.lang.ClassCastException shall occur at
request time when the assignment of the object referenced
to the scripting variable is attempted.
If unspecified, the value is the same as the value of the class
attribute.

Table JSP.5-1 jsp:useBean Attributes

STANDARD ACTIONS1-100

JavaServer Pages 2.1 Specification

expression is used, the type conversions described in Section 1.16 “Type
Conversion” of the EL specification document are performed.

When assigning values to indexed properties the value must be an array; the
rules described in the previous paragraph apply to the actions.

A conversion failure leads to an error, whether at translation time or request-
time.

Examples

The following two actions set a value from the request parameter values.

<jsp:setProperty name=”request” property=”*” />
<jsp:setProperty name=”user” property=”user” param=”username” />

The following two elemenst set a property from a value

<jsp:setProperty name=”results” property=”col” value=”${i mod 4}”/>
<jsp:setProperty name=”results” property=”row” value=”<%= i/4 %>” />

Syntax

<jsp:setProperty name="beanName" prop_expr />

prop_expr ::=
property="*" |
property=”propertyName”|
property=”propertyName” param="parameterName"|
property=”propertyName” value=”propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as
described in Section JSP.1.14.1, “Request Time Attribute Values”.

propertyValue ::= expr_scriptlet1

1. See syntax for expression scriptlet <%= ... %>

<jsp:getProperty> 1-101

JavaServer Pages 2.1 Specification

The <jsp:setProperty> action has the following attributes:

JSP.5.3 <jsp:getProperty>

The <jsp:getProperty> action places the value of a bean instance property, con-
verted to a String, into the implicit out object, from which the value can be displayed
as output. The bean instance must be defined as indicated in the name attribute
before this point in the page (usually via a jsp:useBean action).

The conversion to String is done as in the println methods, i.e. the toString

method of the object is used for Object instances, and the primitive types are
converted directly.

If the object is not found, a request-time exception is raised.

Table JSP.5-2 jsp:setProperty Attributes

name The name of a bean instance defined by a <jsp:useBean>
action or some other action. The bean instance must contain
the property to be set. The defining action must appear
before the <jsp:setProperty> action in the same file.

property The name of the property whose value will be set. If proper-
tyName is set to * then the tag will iterate over the current
ServletRequest parameters, matching parameter names and
value type(s) to property names and setter method type(s),
setting each matched property to the value of the matching
parameter. If a parameter has a value of "", the
corresponding property is not modified.

param The name of the request parameter whose value is given to
a bean property. The name of the request parameter usually
comes from a web form.
If param is omitted, the request parameter name is assumed
to be the same as the bean property name.
If the param is not set in the Request object, or if it has the
value of ““, the jsp:setProperty action has no effect (a noop).
An action may not have both param and value attributes.

value The value to assign to the given property.
This attribute can accept a request-time attribute expression
as a value.
An action may not have both param and value attributes.

STANDARD ACTIONS1-102

JavaServer Pages 2.1 Specification

The value of the name attribute in jsp:setProperty and jsp:getProperty will
refer to an object that is obtained from the pageContext object through its findAt-

tribute method.
The object named by the name must have been “introduced” to the JSP

processor using either the jsp:useBean action or a custom action with an
associated VariableInfo entry for this name. If the object was not introduced in this
manner, the container implementation is recommended (but not required) to raise
a translation error, since the page implementation is in violation of the
specification.

Note – A consequence of the previous paragraph is that objects that are stored
in, say, the session by a front component are not automatically visible to jsp:set-

Property and jsp:getProperty actions in that page unless a jsp:useBean action, or
some other action, makes them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to
access the same object, it can use that information. For example it may use a
scripting variable, but it must guarantee that no intervening code has invalidated
the copy held by the scripting variable. The truth is always the value held by the
pageContext object.

Examples

<jsp:getProperty name=”user” property=”name” />

Syntax

<jsp:getProperty name=”name” property=”propertyName” />

The attributes are:

Table JSP.5-3 jsp:getProperty Attributes

name The name of the object instance from which the property is
obtained.

property Names the property to get.

<jsp:include> 1-103

JavaServer Pages 2.1 Specification

JSP.5.4 <jsp:include>

A <jsp:include .../> action provides for the inclusion of static and dynamic
resources in the same context as the current page. See Table JSP.1-10 for a sum-
mary of include facilities.

Inclusion is into the current value of out. The resource is specified using a rel-

ativeURLspec that is interpreted in the context of the web application (i.e. it is
mapped).

The page attribute of both the jsp:include and the jsp:forward actions are
interpreted relative to the current JSP page, while the file attribute in an include
directive is interpreted relative to the current JSP file. See below for some
examples of combinations of this.

An included page cannot change the response status code or set headers. This
precludes invoking methods like setCookie. Attempts to invoke these methods
will be ignored. The constraint is equivalent to the one imposed on the include

method of the RequestDispatcher class.
A jsp:include action may have jsp:param subelements that can provide values

for some parameters in the request to be used for the inclusion.
Request processing resumes in the calling JSP page, once the inclusion is

completed.
The flush attribute controls flushing. If true, then, if the page output is

buffered and the flush attribute is given a true value, then the buffer is flushed
prior to the inclusion, otherwise the buffer is not flushed. The default value for the
flush attribute is false.

Examples

<jsp:include page=”/templates/copyright.html”/>

The above example is a simple inclusion of an object. The path is interpreted
in the context of the Web Application. It is likely a static object, but it could be
mapped into, for instance, a servlet via web.xml.

For an example of a more complex set of inclusions, consider the following
four situations built using four JSP files: A.jsp, C.jsp, dir/B.jsp and dir/C.jsp:

STANDARD ACTIONS1-104

JavaServer Pages 2.1 Specification

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <%@ include

file=”C.jsp”%>. In this case the relative specification C.jsp resolves to dir/C.jsp.

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <jsp:include

page=”C.jsp” />. In this case the relative specification C.jsp resolves to dir/

C.jsp.

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <%@ include

file=”C.jsp” %>. In this case the relative specification C.jsp resolves to dir/

C.jsp.

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <jsp:include

page=”C.jsp”/>. In this case the relative specification C.jsp resolves to C.jsp.

Syntax

<jsp:include page=”urlSpec” flush="true|false"/>

and

<jsp:include page=”urlSpec” flush="true|false">
{ <jsp:param /> }*

</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the
values in the param subelements are used to augment the request for the purposes
of the inclusion.

The valid attributes are:

Table JSP.5-4 jsp:include Atrributes

page The URL is a relative urlSpec as in Section JSP.1.2.1,
“Relative URL Specifications”. Relative paths are
interpreted relative to the current JSP page.
Accepts a request-time attribute value (which must evaluate
to a String that is a relative URL specification).

flush Optional boolean attribute. If the value is true, the buffer is
flushed now. The default value is false.

<jsp:forward> 1-105

JavaServer Pages 2.1 Specification

JSP.5.5 <jsp:forward>

A <jsp:forward page=”urlSpec” /> action allows the runtime dispatch of the cur-
rent request to a static resource, a JSP page or a Java servlet class in the same con-
text as the current page. A jsp:forward effectively terminates the execution of the
current page. The relative urlSpec is as in Section JSP.1.2.1, “Relative URL
Specifications”.

The request object will be adjusted according to the value of the page
attribute.

A jsp:forward action may have jsp:param subelements that can provide values
for some parameters in the request to be used for the forwarding.

If the page output is buffered, the buffer is cleared prior to forwarding.
If the page output is buffered and the buffer was flushed, an attempt to

forward the request will result in an IllegalStateException.

If the page output was unbuffered and anything has been written to it, an
attempt to forward the request will result in an IllegalStateException.

Examples

The following action might be used to forward to a static page based on some
dynamic condition.

<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

Syntax

<jsp:forward page=”relativeURLspec” />

and

<jsp:forward page=”urlSpec”>
{ <jsp:param /> }*

</jsp:forward>

This tag allows the page author to cause the current request processing to be

STANDARD ACTIONS1-106

JavaServer Pages 2.1 Specification

affected by the specified attributes as follows:

JSP.5.6 <jsp:param>

The jsp:param element is used to provide key/value information. This element
is used in the jsp:include, jsp:forward, and jsp:params elements. A translation error
shall occur if the element is used elsewhere.

When doing jsp:include or jsp:forward, the included page or forwarded page
will see the original request object, with the original parameters augmented with
the new parameters, with new values taking precedence over existing values when
applicable. The scope of the new parameters is the jsp:include or jsp:forward call;
i.e. in the case of an jsp:include the new parameters (and values) will not apply
after the include. This is the same behavior as in the ServletRequest include and
forward methods (see Section 8.1.1 in the Servlet 2.4 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is
specified for forward, the forwarded request shall have A=bar,foo. Note that the
new param has precedence.

The parameter names and values specified should be left unencoded by the
page author. The JSP container must encode the parameter names and values
using the character encoding from the request object when necessary. For
example, if the container chooses to append the parameters to the URL in the
dispatched request, both the names and values must be encoded as per the content
type application/x-www-form-urlencoded in the HTML specification.

Syntax

<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value. name indicates the
name of the parameter, and value, which may be a request-time expression,
indicates its value.

Table JSP.5-5 jsp:forward Attributes

page The URL is a relative urlSpec as in Section JSP.1.2.1,
“Relative URL Specifications”. Relative paths are inter-
preted relative to the current JSP page.
Accepts a request-time attribute value (which must evaluate
to a String that is a relative URL specification).

<jsp:plugin> 1-107

JavaServer Pages 2.1 Specification

JSP.5.7 <jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains
the appropriate client browser dependent constructs (OBJECT or EMBED) that will
result in the download of the Java Plugin software (if required) and subsequent exe-
cution of the Applet or JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the
response. The attributes of the <jsp:plugin> tag provide configuration data for the
presentation of the element, as indicated in the table below.

The <jsp:params> action containing one or more <jsp:param> actions provides
parameters to the Applet or JavaBeans component.

The <jsp:fallback> element indicates the content to be used by the client
browser if the plugin cannot be started (either because OBJECT or EMBED is not
supported by the client browser or due to some other problem). If the plugin can
start but the Applet or JavaBeans component cannot be found or started, a plugin
specific message will be presented to the user, most likely a popup window
reporting a ClassNotFoundException.

The actual plugin code need not be bundled with the JSP container and a
reference to Sun’s plugin location can be used instead, although some vendors
will choose to include the plugin for the benefit of their customers.

Examples

<jsp:plugin type=”applet” code=”Molecule.class” codebase=”/html” >
<jsp:params>

<jsp:param
name=”molecule”
value=”molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>

<p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>

STANDARD ACTIONS1-108

JavaServer Pages 2.1 Specification

Syntax

<jsp:plugin type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ title=”title” }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" }
{ mayscript=’true|false’ } >

{ <jsp:params>
{ <jsp:param name="paramName" value=”paramValue" /> }+

 </jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

Table JSP.5-6 jsp:plugin Attributes

type Identifies the type of the component; a bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

height As defined by HTML spec.
Accepts a run-time expression value.

hspace As defined by HTML spec.

jreversion Identifies the spec version number of the JRE the
component requires in order to operate; the default is: 1.2

name As defined by HTML spec

<jsp:params> 1-109

JavaServer Pages 2.1 Specification

JSP.5.8 <jsp:params>

The jsp:params action is part of the jsp:plugin action and can only occur as a
direct child of a <jsp:plugin> action. Using the jsp:params element in any other con-
text shall result in a translation-time error.

The semantics and syntax of jsp:params are described in Section JSP.5.7.

JSP.5.9 <jsp:fallback>

The jsp:fallback action is part of the jsp:plugin action and can only occur as a
direct child of a <jsp:plugin> element. Using the jsp:fallback element in any other
context shall result in a translation-time error.

The semantics and syntax of jsp:fallback are described in Section JSP.5.7.

JSP.5.10 <jsp:attribute>

The <jsp:attribute> standard action has two uses. It allows the page author to
define the value of an action attribute in the body of an XML element instead of in
the value of an XML attribute. It also allows the page author to specify the
attributes of the element being output, when used inside a <jsp:element> action.
The action must only appear as a subelement of a standard or custom action. An
attempt to use it otherwise must result in a translation error. For example, it cannot
be used to specify the value of an attribute for XML elements that are template

vspace As defined by HTML spec

title As defined by the HTML spec

width As defined by HTML spec.
Accepts a run-time expression value.

nspluginurl URL where JRE plugin can be downloaded for Netscape
Navigator, default is implementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default
is implementation defined.

mayscript As defined by HTML spec.

Table JSP.5-6 jsp:plugin Attributes

STANDARD ACTIONS1-110

JavaServer Pages 2.1 Specification

text. For custom action invocations, JSP containers must support the use of
<jsp:attribute> for both Classic and Simple Tag Handlers.

The behavior of the <jsp:attribute> standard action varies depending on the
type of attribute being specified, as follows:

• A translation error must occur if <jsp:attribute> is used to define the value of an
attribute of <jsp:attribute>.

• If the enclosing action is <jsp:element>, the value of the name attribute and
the body of the action will be used as attribute name/value pairs in the dynam-
ically constructed element. See Section JSP.5.14 for more details on <jsp:ele-

ment>. Note that in this context, the attribute does not apply to the
<jsp:element> action itself, but rather to the output of the element. That is,
<jsp:attribute> cannot be used to specify the name attribute of the <jsp:ele-

ment> action.

• For custom action attributes of type javax.servlet.jsp.tagext.JspFragment, the
container must create a JspFragment out of the body of the <jsp:attribute> ac-
tion and pass it to the tag handler. This applies for both Classic Tag Handlers
and Simple Tag Handlers. A translation error must result if the body of the
<jsp:attribute> action is not scriptless in this case.

• If the custom action accepts dynamic attributes (Section JSP.7.1.8, “Attributes
With Dynamic Names”), and the name of the attribute is not one explicitly in-
dicated for the tag, then the container will evaluate the body of <jsp:attribute>

and assign the computed value to the attribute using the dynamic attribute ma-
chinery. Since the type of the attribute is unknown and the body of <jsp:at-

tribute> evaluates to a String, the container must pass in an instance of String.

• For standard or custom action attributes that accept a request-time expression
value, the Container must evaluate the body of the <jsp:attribute> action and
use the result of this evaluation as the value of the attribute. The body of the
attribute action can be any JSP content in this case. If the type of the attribute
is not String, the standard type conversion rules are applied, as per
Section JSP.1.14.2.1, “Conversions from String values”.

• For standard or custom action attributes that do not accept a request-time ex-
pression value, the Container must use the body of the <jsp:attribute> action as
the value of the attribute. A translation error must result if the body of the
<jsp:attribute> action contains anything but template text.

<jsp:attribute> 1-111

JavaServer Pages 2.1 Specification

If the body of the <jsp:attribute> action is empty, it is the equivalent of
specifying “” as the value of the attribute. Note that after being trimmed, non-
empty bodies can result in a value of ““ as well.

The <jsp:attribute> action accepts a name attribute and a trim attribute. The
name attribute associates the action with one of the attributes the tag handler is
declared to accept, or in the case of <jsp:element> it associates the action with one
of the attributes in the element being output. The optional trim attribute determines
whether the whitespace appearning at the beginning and at the end of the element
body should be discarded or not. By default, the leading and trailing whitespace is
discarded. The Container must trim at translation time only. The Container must
not trim at runtime. For example, if a body contains a custom action that produces
leading or trailing whitespace, that whitespace is preserved regardless of the value
of the trim attribute.

The following is an example of using the <jsp:attribute> standard action to
define an attribute that is evaluated by the container prior to the custom action
invocation. This example assumes the name attribute is declared with type
java.lang.String in the TLD.

<mytag:highlight>
<jsp:attribute name=”text”>

Inline definition.
</jsp:attribute>

</mytag:highlight>

The following is an example of using the <jsp:attribute> standard action
within <jsp:element>, to define which attributes are to be output with that element:

<jsp:element name=”firstname”>
<jsp:attribute name=”name”>Susan</jsp:attribute>

</jsp:element>

This would produce the following output:

<firstname name=”Susan”/>

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:attribute> standard action.

STANDARD ACTIONS1-112

JavaServer Pages 2.1 Specification

The attributes are:

JSP.5.11 <jsp:body>

Normally, the body of a standard or custom action invocation is defined implic-
itly as the body of the XML element used to represent the invocation. The body of a
standard or custom action can also be defined explicitly using the <jsp:body> stan-
dard action. This is required if one or more <jsp:attribute> elements appear in the
body of the tag.

If one or more <jsp:attribute> elements appear in the body of a tag invocation
but no <jsp:body> element appears or an empty <jsp:body> element appears, it is
the equivalent of the tag having an empty body.

It is also legal to use the <jsp:body> standard action to supply bodies to
standard actions, for any standard action that accepts a body (except for

Table JSP.5-7 Attributes for the <jsp:attribute> standard action

name (required) If not being used with <jsp:element>, then if the
action does not accept dynamic attributes, the name must
match the name of an attribute for the action being invoked,
as declared in the Tag Library Descriptor for a custom
action, or as specified for a standard action, or a translation
error will result. Except for when used with <jsp:element>,
a translation error will result if both an XML element
attribute and a <jsp:attribute> element are used to specify
the value for the same attribute.
The value of name can be a QName. If so, a translation
error must occur if the prefix does not match that of the
action it applies to, unless the action supports dynamic
attributes, or unless the action is <jsp:element>.
When used with <jsp:element>, this attribute specifies the
name of the attribute to be included in the generated
element.

trim (optional) Valid values are true and false. If true, the
whitespace, including spaces, carriage returns, line feeds,
and tabs, that appears at the beginning and at the end of the
body of the <jsp:attribute> action will be ignored by the JSP
compiler. If false the whitespace is not ignored. Defaults to
true.

<jsp:invoke> 1-113

JavaServer Pages 2.1 Specification

<jsp:body>, <jsp:attribute>, <jsp:scriptlet>, <jsp:expression>, and <jsp:declara-

tion>).
The body standard action accepts no attributes.

JSP.5.12 <jsp:invoke>

The <jsp:invoke> standard action can only be used in tag files (see
Chapter JSP.8, “Tag Files”), and must result in a translation error if used in a JSP.
It takes the name of an attribute that is a fragment, and invokes the fragment,
sending the output of the result to the JspWriter, or to a scoped attribute that can be
examined and manipulated. If the fragment identified by the given name is null,
<jsp:invoke> will behave as though a fragment was passed in that produces no
output.

JSP.5.12.1 Basic Usage

The most basic usage of this standard action will invoke a fragment with the
given name with no parameters. The fragment will be invoked using the JspFrag-

ment.invoke method, passing in null for the Writer parameter so that the results
will be sent to the JspWriter of the JspContext associated with the JspFragment.
The following is an example of such a basic fragment invocation:

<jsp:invoke fragment=”frag1”/>

JSP.5.12.2 Storing Fragment Output

It is also possible to invoke the fragment and send the results to a scoped
attribute for further examination and manipulation. This can be accomplished by
specifying the var or varReader attribute in the action. In this usage, the fragment
is invoked using the JspFragment.invoke method, but a custom java.io.Writer is
passed in instead of null.

If var is specified, the container must ensure that a java.lang.String object is
made available in a scoped attribute with the name specified by var. The String

must contain the content sent by the fragment to the Writer provided in the Jsp-

Fragment.invoke call.
If varReader is specified, the container must ensure that a java.io.Reader

object is constructed and is made available in a scoped attribute with the name
specified by varReader. The Reader object can then be passed to a custom action
for further processing. The Reader object must produce the content sent by the

STANDARD ACTIONS1-114

JavaServer Pages 2.1 Specification

fragment to the provided Writer. The Reader must also be resettable. That is, if its
reset method is called, the result of the invoked fragment must be able to be read
again without re-executing the fragment.

An optional scope attribute indicates the scope of the resulting scoped
variable.

The following is an example of using var or varReader and the scope

attribute:

<jsp:invoke fragment=”frag2” var=”resultString” scope=”session”/>

<jsp:invoke fragment=”frag3” varReader=”resultReader” scope=”page”/>

JSP.5.12.3 Providing a Fragment Access to Variables

JSP fragments have access to the same page scope variables as the page or tag
file in which they were defined (in addition to variables in the request, session,
and application scopes). Tag files have access to a local page scope, separate from
the page scope of the calling page. When a tag file invokes a fragment that
appears in the calling page, the JSP container provides a way to synchronize
variables between the local page scope in the tag file and the page scope of the
calling page. For each variable that is to be synchronized, the tag file author must
declare the variable with a scope of either AT_BEGIN or NESTED. The container
must then generate code to synchronize the page scope values for the variable in
the tag file with the page scope equivalent in the calling page or tag file. The
details of how variables are synchronized can be found in Section JSP.8.9,
“Variable Synchronization”.

The following is an example of a tag file providing a fragment access to a
variable:

<%@ variable name-given=”x” scope=”NESTED” %>
...
<c:set var=”x” value=”1”/>
<jsp:invoke fragment=”frag4”/>

A translation error shall result if the <jsp:invoke> action contains a non-empty
body.

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:invoke> standard action.

<jsp:doBody> 1-115

JavaServer Pages 2.1 Specification

The attributes are:

JSP.5.13 <jsp:doBody>

The <jsp:doBody> standard action can only be used in tag files (see
Chapter JSP.8, “Tag Files”), and must result in a translation error if used in a JSP.
It invokes the body of the tag, sending the output of the result to the JspWriter, or
to a scoped attribute that can be examined and manipulated.

The <jsp:doBody> standard action behaves exactly like <jsp:invoke>, except
that it operates on the body of the tag instead of on a specific fragment passed as
an attribute. Because it always operates on the body of the tag, there is no name

attribute for this standard action. The var, varReader, and scope attributes are all

Table JSP.5-8 Attributes for the <jsp:invoke> standard action

fragment (required) The name used to identify this fragment during
this tag invocation.

var (optional) The name of a scoped attribute to store the result
of the fragment invocation in, as a java.lang.String object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the fragment goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the fragment invocation in, as a java.io.Reader object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the
result of the fragment invocation goes directly to the Jsp-
Writer, as described above.

scope (optional) The scope in which to store the resulting
variable. A translation error must result if the value is not
one of page, request, session, or application. A translation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in a session. A container
must throw an IllegalStateException at runtime if scope is
session and the calling page does not participate in a
session. Defaults to page.

STANDARD ACTIONS1-116

JavaServer Pages 2.1 Specification

supported with the same semantics as for <jsp:invoke>. Fragments are provided
access to variables the same way for <jsp:doBody> as they are for <jsp:invoke>. If
no body was passed to the tag, <jsp:doBody> will behave as though a body was
passed in that produces no output.

The body of a tag is passed to the simple tag handler as a JspFragment object.
A translation error shall result if the <jsp:doBody> action contains a non-

empty body.
See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax

definition of the <jsp:doBody> standard action.
The attributes are:

JSP.5.14 <jsp:element>

The jsp:element action is used to dynamically define the value of the tag of an
XML element. This action can be used in JSP pages, tag files and JSP documents.

Table JSP.5-9 Attributes for the <jsp:doBody> standard action

var (optional) The name of a scoped attribute to store the result
of the body invocation in, as a java.lang.String object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the body goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the body invocation in, as a java.io.Reader object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the
result of the body invocation goes directly to the JspWriter,
as described above.

scope (optional) The scope in which to store the resulting
variable. A translation error must result if the value is not
one of page, request, session, or application. A translation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in a session. A container
must throw an IllegalStateException at runtime if scope is
session and the calling page does not participate in a
session. Defaults to page.

<jsp:element> 1-117

JavaServer Pages 2.1 Specification

This action has an optional body; the body can use the jsp:attribute and jsp:body

actions.

A jsp:element action has one mandatory attribute, name, of type String. The
value of the attribute is used as that of the tag of the element generated.

Examples

The following example generates an XML element whose name depends on
the result of an EL expression, content.headerName. The element has an
attribute, lang, and the value of the attribute is that of the expression con-
tent.lang. The body of the element is the value of the expression content.body.

<jsp:element
name=”${content.headerName}”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:attribute name=”lang”>${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

The next example fragment shows that jsp:element needs no children. The
example generates an empty element with name that of the value of the
expression myName.

<jsp:element name=”${myName}”/>

Syntax

The jsp:element action may have a body. Two forms are valid, depending on
whether the element is to have attributes or not. In the first form, no attributes are
present:

<jsp:element name="name">
optional body

</jsp:element>

In the second form, zero or more attributes are requested, using jsp:attribute

and jsp:body, as appropriate.

<jsp:element name="name">
jsp:attribute*
jsp:body?

</jsp:element>

STANDARD ACTIONS1-118

JavaServer Pages 2.1 Specification

The one valid, mandatory, attribute of jsp:element is its name. Unlike other
standard actions, the value of the name attribute must be given as an XML-style
attribute and cannot be specified using <jsp:attribute> This is because
<jsp:attribute> has a special meaning when used in the body of <jsp:element>. See
Section JSP.5.10 for more details..

JSP.5.15 <jsp:text>

A jsp:text action can be used to enclose template data in a JSP page, a JSP doc-
ument, or a tag file. A jsp:text action has no attributes and can appear anywhere that
template data can. Its syntax is:

<jsp:text> template data </jsp:text>

The interpretation of a jsp:text element is to pass its content through to the

current value of out. This is very similar to the XSLT xsl:text

element.Examples

The following example is a fragment that could be in both a JSP page or a JSP
document.

<jsp:text>
This is some content

</jsp:text>

Expressions may appear within jsp:text, as in the next example, where the
expression foo.content is evaluated and the result is inserted.

<jsp:text>
This is some content: ${foo.content}

</jsp:text>

No subelements may appear within jsp:text; for example the following frag-
ment is invalid and must generate a translation error.

Table JSP.5-10 Attributes for the <jsp:element> standard action

name (required) The value of name is that of the element
genreated. The name can be a QName; JSP 2.0 places no
constraints on this value: it is accepted as is. A request-time
attribute value may be used for this attribute.

<jsp:output> 1-119

JavaServer Pages 2.1 Specification

<jsp:text>
This is some content: <jsp:text>foo</jsp:text>

</jsp:text>

When within a JSP document, of course, the body content needs to
additionally conform to the constraints of being a well-formed XML document, so
the following example, although valid in a JSP page is invalid in a JSP document:

<jsp:text>
This is some content: ${foo.content > 3}

</jsp:text>

The same example can be made legal, with no semantic changes, by using gt
instead of > in the expression; i.e. ${foo.content gt 3}.

In an JSP document, CDATA sections can also be used to quote,
uninterpreted, content, as in the following example:

<jsp:text>
<![CDATA[<mumble></foobar>]]>

</jsp:text>

Syntax

The jsp:text action has no attributes. The action may have a body. The body
may not have nested actions nor scripting elements. The body may have EL
expressions. The syntax is of the form:

<jsp:text>
optional body

</jsp:text>

JSP.5.16 <jsp:output>

The jsp:output action can only be used in JSP documents and in tag files in
XML syntax, and a translation error must result if used in a standard syntax JSP or
tag file. This action is used to modify some properties of the output of a JSP docu-
ment or a tag file. In JSP 2.0 there are four properties that can be specified, all of
which affect the output of the XML prolog.

The omit-xml-declaration property allows the page author to adjust whether an
XML declaration is to be inserted at the beginning of the output. Since XML

STANDARD ACTIONS1-120

JavaServer Pages 2.1 Specification

declarations only make sense for when the generated content is XML, the default
value of this property is defined so that it is unnecessary in most cases.

The omit-xml-declaration property is of type String and the valid values are
“yes”, “no”, “true” and “false”. The name, values and semantics mimic that of the
xsl:output element in the XSLT specification: if a value of “yes” or “true” is given,
the container will not add an XML declaration; if a value of “no” or “false” is
given, the container will add an XML declaration.

The default value for a JSP document that has a jsp:root element is “yes”. The
default value for JSP documents without a jsp:root element is “no”.

The default value for a tag file in XML syntax is always “yes”. If the value is
“false” or “no” the tag file will emit an XML declaration as its first content.

The generated XML declaration is of the form:

<?xml version=”1.0” encoding=”encodingValue” ?>

Where encodingValue is the response character encoding, as determined in
Section JSP.4.2, “Response Character Encoding” .

The doctype-root-element, doctype-system and doctype-public properties allow
the page author to specify that a DOCTYPE be automatically generated in the
XML prolog of the output. Without these properties, the DOCTYPE would need
to be output manually via a <jsp:text> element before the root element of the JSP
document, which is inconvenient.

A DOCTYPE must be automatically output if and only if the doctype-system

element appears in the translation unit as part of a <jsp:output> action. The doc-

type-root-element must appear and must only appear if the doctype-system

property appears, or a translation error must occur. The doctype-public property is
optional, but must not appear unless the doctype-system property appears, or a
translation error must occur.

The DOCTYPE to be automatically output, if any, is statically determined at
translation time. Multiple occurrences of the doctype-root-element, doctype-sys-

tem or doctype-public properties will cause a translation error if the values for the
properties differ from the previous occurrence.

The DOCTYPE that is automatically output, if any, must appear immediately
before the first element of the output document. The name following
<!DOCTYPE must be the value of the doctype-root-element property. If a doc-

type-public property appears, then the format of the generated DOCTYPE is:

<!DOCTYPE nameOfRootElement PUBLIC “doctypePublic” “doctypeSystem”>

<jsp:output> 1-121

JavaServer Pages 2.1 Specification

If a doctype-public property does not appear, then the format of the generated
DOCTYPE is:

<!DOCTYPE nameOfRootElement SYSTEM “doctypeSystem”>

Where nameOfRootElement is the value of the doctype-root-element property,
doctypePublic is the value of the doctype-public attribute, and doctypeSystem is the
value of the doctype-system property.

The values for doctypePublic and doctypeSystem must be enclosed in either
single or double quotes, depending on the value provided by the page author. It is
the responsibility of the page author to provide a syntactically-valid URI as per
the XML specification (see http://www.w3.org/TR/REC-xml#dt-sysid).

Examples

The following JSP document (with an extension of .jspx or with <is-xml> set
to true in the JSP configuration):

<?xml version=”1.0” encoding=”EUC-JP” ?>
<hello></hello>

generates an XML document as follows:

<?xml version=”1.0” encoding=”UTF-8” ?>
<hello></hello>

The following JSP document is like the previous one, except that the XML
declaration is omited. A typical use would be where the XML fragment is to
be included within another document.

<?xml version=”1.0” encoding=”EUC-JP” ?>
<hello>

<jsp:output
xmlns:jsp=”http://java.sun.com/JSP/Page”
omit-xml-declaration=”true”/>

</hello>

The following JSP document is equivalent but uses jsp:root instead of jsp:out-

put.

STANDARD ACTIONS1-122

JavaServer Pages 2.1 Specification

<?xml version=”1.0” encoding=”EUC-JP” ?>
<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0”>

<hello></hello>
</jsp:root>

The following JSP document specifies both a doctype-public and a doctype-

system:

<?xml version=”1.0” encoding=”UTF-8” ?>
<html xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:output doctype-root-element=”html”
doctype-public=”-//W3C//DTD XHTML Basic 1.0//EN”
doctype-system=”http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd” />

<body>
<h1>Example XHTML Document</h1>

</body>
</html>

and generates and XML document as follows:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html><body><h1>Example XHTML Document</h1></body></html>

The following JSP document omits the doctype-public and explicitly omits the
XML declaration:

<?xml version=”1.0” encoding=”UTF-8” ?>
<elementA>

<jsp:output omit-xml-declaration=”true”
doctype-root-element=”elementA”
doctype-system=”test.dtd” />

Element body goes here.
</elementA>

and generates an XML document as follows:

<!DOCTYPE elementA SYSTEM “test.dtd”>
<elementA>Element body goes here.</elementA>

Other Standard Actions 1-123

JavaServer Pages 2.1 Specification

Syntax

The jsp:output action cannot have a body. The <jsp:output> action has the
following syntax:

<jsp:output (omit-xml-declaration=”yes|no|true|false”) { doctypeDecl } />

doctypeDecl ::= (doctype-root-element=”rootElement”
doctype-public=”PubidLiteral”
doctype-system=”SystemLiteral”)

| (doctype-root-element=”rootElement”
doctype-system=”SystemLiteral”)

The following are the valid attributes of jsp:output:

JSP.5.17 Other Standard Actions

Chapter JSP.6, “JSP Documents” defines several other standard actions that are
either convenient or needed to describe JSP pages with an XML document, some of
which are available in all JSP pages. They are:

• <jsp:root>, defined in Section JSP.6.3.2, “The jsp:root Element”.

• <jsp:declaration>, defined in Section JSP.6.3.7, “Scripting Elements”.

Table JSP.5-11 Attribute for the <jsp:output> standard action

omit-xml-declaration (optional) Indicates whether to omit the generation of an
XML declaration. Acceptable values are “true”, “yes”,
“false” and “no”.

doctype-root-element (optional) Must be specified if and only if doctype-system
is specified or a translation error must occur. Indicates the
name that is to be output in the generated DOCTYPE
declaration.

doctype-system (optional) Specifies that a DOCTYPE declaration is to be
generated and gives the value for the System Literal.

doctype-public (optional) Must not be specified unless doctype-system is
specified. Gives the value for the Public ID for the
generated DOCTYPE.

STANDARD ACTIONS1-124

JavaServer Pages 2.1 Specification

• <jsp:scriptlet>, defined in Section JSP.6.3.7, “Scripting Elements”.

• <jsp:expression>, defined in Section JSP.6.3.7, “Scripting Elements”.

1-125JavaServer Pages 2.1 Specification

C H A P T E R JSP.6
JSP Documents

This chapter introduces two concepts related to XML and JSP: JSP docu-
ments and XML views. This chapter provides a brief overview of the two concepts
and their relationship and also provides the details of JSP documents. The details of
the XML view of a JSP document are described in Chapter JSP.10, “XML View”.

JSP.6.1 Overview of JSP Documents and of XML Views

A JSP document is a JSP page written using XML syntax. JSP documents
need to be described as such, either implicitly or explicitly, to the JSP container,
which will then process them as XML documents, checking for well-formedness
and applying requests like entity declarations, if present. JSP documents are used
to generate dynamic content using the standard JSP semantics.

Here is a simple JSP document:

<table>
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">

<row>${counter}</row>
</c:forEach>

</table>

This well-formed, namespace-aware XML document generates, using the JSP
standard tag library, an XML document that has <table> as the root element. That
element has 3 <row> subelements containing values 1, 2 and 3. See
Section JSP.6.4 for more details of this and other examples.

JSP DOCUMENTS1-126

JavaServer Pages 2.1 Specification

The design of JSP documents is focused on the generation of dynamic XML
content, in any of its many uses, but JSP documents can be used to generate any
dynamic content.

Some of the syntactic elements described in Chapter JSP.1, “Core Syntax and
Semantics” are not legal XML; this chapter describes alternative syntaxes for
those elements that are aligned with the XML syntax. The alternative syntaxes can
be used in JSP documents; most of them (jsp:output and jsp:root are exceptions)
can also be used in JSP pages in JSP syntax. As it will be described later, the
alternative syntax is also used in the XML view of JSP pages.

JSP documents can be used in a number of ways, including:

• JSP documents can be passed directly to the JSP container; this is becoming
more important as more and more content is authored as XML, be it in an
XML-based languages like XHTML or SVG, or for the exchange of docu-
ments in applications like Web Services. The generated content may be sent di-
rectly to a client, or it may be part of some XML processing pipeline.

• JSP documents can be manipulated by XML-aware tools.

• A JSP document can be generated from a textual representation by applying
an XML transformation, like XSLT.

• A JSP document can be generated automatically, say by serializing some ob-
jects

Tag files can also be authored using XML syntax. The rules are very similar
to that of JSP documents; see Section JSP.8.6, “Tag Files in XML Syntax” for
more details.

The XML view of a JSP page is an XML document that is derived from the
JSP page following a mapping defined later in this chapter. The XML view of a
JSP page is intended to be used for validating the JSP page against some
description of the set of valid pages. Validation of the JSP page is supported in the
JSP 2.1 specification through a TagLibraryValidator class associated with a tag
library. The validator class acts on a PageData object that represents the XML
view of the JSP page (see, for example, Section JSP.7.4.1.2, “Validator Classes”)

Figure JSP.6-1 below depicts the relationship between the concepts of JSP
pages, JSP documents and XML views. Two phases are involved: the Translation
phase, where JSP pages, in either syntax, are exposed to Tag Library Validators,
via their XML view, and the Request Processing phase, where requests are
processed to produce responses.

JSP Documents 1-127

JavaServer Pages 2.1 Specification

Figure JSP.6-1 Relationship between JSP Pages and XML views of JSP pages.

JSP documents are used by JSP page authors. They can be authored directly,
using a text editor, through an XML editing tool, or through a JSP page authoring
tool that is aware of the XML syntax. Any JSP page author that is generating
XML content should consider the use of JSP documents. In contrast, the XML
view of a JSP page is a concept internal to the JSP container and is of interest only
to Tag Library Authors and to implementors of JSP containers.

JSP.6.2 JSP Documents

A JSP document is a JSP page that is a namespace-aware XML document and
that is identified as a JSP document to the JSP container.

JSP.6.2.1 Identifying JSP Documents

A JSP document can be identified as such in three ways:

JSP Pages

REQUEST PROCESSING

TRANSLATION PHASE

JSP
Syntax

XML
Syntax

XML
View

PHASE

JSP

TLV1 - ERRORS OR OK

TLV2 - ERRORS OR OK

Implementation
Class

Request

Response

JSP DOCUMENTS1-128

JavaServer Pages 2.1 Specification

• If there is a <jsp-property-group> that explicitly indicates, through the <is-xml>

element, whether a given file is a JSP document, then that indication overrides
any other determination. Otherwise,

• If this web application is using a version 2.4 web.xml, and if the extension is
.jspx, then the file is a JSP document. Otherwise,

• If the file is explicitly or implicitly identified as a JSP page and the top element
is a jsp:root element then the file is identified as a JSP document. This behavior
provides backwards compatibility with JSP 1.2.

It is a translation-time error for a file that is identified as a JSP document to
not be a well-formed, namespace-aware, XML document.

See Section JSP.8.6, “Tag Files in XML Syntax” for details on identifying tag
files in XML syntax.

JSP.6.2.2 Overview of Syntax of JSP Documents

A JSP document may or not have a <jsp:root> as its top element; <jsp:root>

was mandatory in JSP 1.2, but we expect most JSP documents in JSP 2.0 not to
use it.

JSP documents identify standard actions through the use of a well-defined
URI in its namespace; although in this chapter the prefix jsp is used for the
standard actions, any prefix is valid as long as the correct URI identifying JSP 2.0
standard actions is used. Custom actions are identified using the URI that
identifies their tag library; taglib directives are not required and cannot appear in a
JSP document.

A JSP document can use XML elements as template data; these elements may
have qualified names (and thus be in a namespace), or be unqualified.

The <jsp:text> element can be used to define some template data verbatim.
Since a JSP document must be a valid XML document, there are some JSP

elements that can’t be used in a JSP document. The elements that can be used are:

• JSP directives and scripting elements in XML syntax.

• EL expressions in the body of elements and in attribute values.

• All JSP standard actions described in Chapter JSP.1.

• The jsp:root, jsp:text, and jsp:output elements.

• Custom action elements

• Template data described using jsp:text elements.

JSP Documents 1-129

JavaServer Pages 2.1 Specification

• Template data described through XML fragments.

Scriptlet expressions used to specify request-time attribute values use a
slightly different syntax in JSP documents than in non JSP documents; rather than
using <%= expr %>, they use %= expr %. The white space around expr is not
needed, and note the missing < and >. The expr, after any applicable quoting as in
any other XML document, is an expression to be evaluated as in
Section JSP.1.14.1, “Request Time Attribute Values”.

The mechanisms that enable scripting and EL evaluation in a JSP page apply
also when the page is a JSP document. Just as in the standard syntax, the $ in an
EL expression can be quoted using \$ in both attribute values and template text.
Recall, however, that \\ is not an escape sequence in XML attributes so whereas
within an attribute in standard syntax \\${1+1} would result in \2 (assuming EL is
enabled) or \${1+1} (assuming EL is ignored), in XML syntax \\${1+1} always
results in \${1+1}.

It should be noted that the equivalent JSP document form of
<a href="<%= url %>">, where ’a’ is not a custom action, is:

<jsp:text><![CDATA[</jsp:text><jsp:expression>url</jsp:expres-
sion><jsp:text><![CDATA[">]]></jsp:text>

In the JSP document element , "%= url %" does not
represent a request-time attribute value. That syntax only applies for custom
action elements. This is in contrast to , where "${url}" represents
an EL expression in both JSP pages and JSP documents.

JSP.6.2.3 Semantic Model

The semantic model of a JSP document is unchanged from that of a JSP page
in JSP syntax: JSP pages generate a response stream of characters from template
data and dynamic elements. Template data can be described explicitly through a
jsp:text element, or implicitly through an XML fragment. Dynamic elements are
EL expressions, scripting elements, standard actions or custom actions. Scripting
elements are represented as XML elements with the exception of request-time
attribute expressions, which are represented through special attribute syntax.

The first step in processing a JSP document is to process it as an XML
document, checking for well-formedness, processing entity resolution and, if
applicable, performing validation as described in Section JSP.6.2.4. As part of the
processing XML quoting will be performed, and JSP quoting will not be
performed later.

JSP DOCUMENTS1-130

JavaServer Pages 2.1 Specification

After these steps, the JSP document will be passed to the JSP container which
will then interpret it as a JSP page.

The JSP processing step for a JSP document is as for any other JSP page
except that namespaces are used to identify standard actions and custom action tag
libraries and that run time expressions in attributes use the slightly different
syntax. Note that all the JSP elements that are described in this chapter are valid in
all JSP pages, be they identified as JSP documents or not. This is a backward
compatible change from the behavior in JSP 1.2 to enable gradual introduction of
XML syntax in existing JSP pages.

To clearly explain the processing of whitespace, we follow the structure of the
XSLT specification. The first step in processing a JSP document is to identify the
nodes of the document. Then, all textual nodes that have only white space are
dropped from the document; the only exception are nodes in a jsp:text element,
which are kept verbatim. The resulting nodes are interpreted as described in the
following sections. Template data is either passed directly to the response or it is
mediated through (standard or custom) actions.

Following the XML specification (and the XSLT specification), whitespace
characters are #x20, #x9, #xD, or #xA.

The container will add, in some conditions, an XML declaration to the output;
the rules for this depend on the use of jsp:root and jsp:output; see
Section JSP.6.3.3.

JSP.6.2.4 JSP Document Validation

A JSP Document with a DOCTYPE declaration must be validated by the con-
tainer in the translation phase. Validation errors must be handled the same way as
any other translation phase errors, as described in Section JSP.1.4.1, “Translation
Time Processing Errors”.

JSP 2.0 requires only DTD validation for JSP Documents; containers should
not perform validation based on other types of schemas, such as XML schema.

If an author wishes to have the JSP Document framed by the root element of a
vocabulary outside the http://java.sun.com/JSP/Page namespace, and they wish to
be able to validate the JSP Document according to a DTD, then they should be
aware that the DTD must make explicit provision for elements from the JSP
namespace, and the namespace prefix to which they are bound.

For example, the following XML document:

Syntactic Elements in JSP Documents 1-131

JavaServer Pages 2.1 Specification

<?xml version="1.0"?>
<!DOCTYPE root PUBLIC "-//My Org//My DTD//EN"
"http://www.my.org/dtd/my.dtd">
<root xmlns:jsp="http://java.sun.com/JSP/Page"/>

can only be validated against its DTD if the DTD makes special
provision for both the attribute "xmlns:jsp" on the root element, and
also for elements with a "jsp" namespace prefix. Even if the DTD
provides for this, you must bind the namespace to the prefix that the
DTD has chosen.

JSP.6.3 Syntactic Elements in JSP Documents

This section describes the elements in a JSP document.

JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries

JSP documents and tag files in XML syntax use XML namespaces to identify
the standard actions, the directives, and the custom actions. JSP pages and tags in
the JSP syntax cannot use XML namespaces and instead must use the taglib direc-
tive.

Though the prefix "jsp" is used throughout this specification, it is the
namespace http://java.sun.com/JSP/Page and not the prefix "jsp" that identifies the
JSP standard actions.

An xmlns attribute for a custom tag library of the form xml:prefix=’uri’

identifies the tag library through the uri value. The uri value may be of one of three
forms, either a URN of the form urn:jsptagdir:tagdir, a URN of the form
urn:jsptld:path, or a plain URI.

If the uri value is a URN of the form urn:jsptld:path, then the TLD is
determined following the mechanism described in Section JSP.7.3.2, “TLD
resource path”.

If the uri value is a URN of the form urn:jsptagdir:tagdir, then the TLD is
determined following the mechanism described in Section JSP.8.4, “Packaging
Tag Files”.

If the uri value is a plain URI, then a path is determined by consulting the
mapping indicated in web.xml extended using the implicit maps in the packaged
tag libraries (Sections Section JSP.7.3.3, “Taglib Map in web.xml” and
Section JSP.7.3.4, “Implicit Map Entries from TLDs”), as indicated in
Section JSP.7.3.6, “Determining the TLD Resource Path”. In contrast to

JSP DOCUMENTS1-132

JavaServer Pages 2.1 Specification

Section JSP.7.3.6.2, “Computing the TLD Resource Path”, however, a translation
error must not be generated if the given uri is not found in the taglib map. Instead,
any actions in the namespace defined by the uri value must be treated as
uninterpreted.

JSP.6.3.2 The jsp:root Element

The jsp:root element can only appear as the root element in a JSP document or
in a tag file in XMLsyntax; otherwise a translation error shall occur. JSP documents
and tag files in XML syntax need not have a jsp:root element as its root element.

The jsp:root element has two main uses. One is to indicate that the JSP file is in
XML syntax, without having to use configuration group elements nor using the
.jspx extension. The other use of the jsp:root element is to accomodate the genera-
tion of content that is not a single XML document: either a sequence of XML docu-
ments or some non-XML content.

A jsp:root element can be used to provide zero or more xmlns attributes that
correspond to namespaces for the standard actions, for custom actions or for
generated template text. Unlike in JSP 1.2, not all tag libraries used within the JSP
document need to be introduced on the root; tag libraries can be incorporated as
needed inside the document using additional xmlns attributes.

The jsp:root element has one mandatory element, the version of the JSP spec
that the page is using.

When jsp:root is used, the container will, by default, not insert an XML
declaration; the default can be changed using the jsp:output element.

Examples

The following example generates a sequence of two XML documents. No
XML declaration is generated.

<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0">
<table>foo</table>
<table>bar</table>

</jsp:root>

The following example generates one XML document. An XML declaration
is generated because of the use of jsp:output. The example is mostly instruc-
tional, as the same content could be generated dropping the jsp:root element.

Syntactic Elements in JSP Documents 1-133

JavaServer Pages 2.1 Specification

<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0">
<jsp:output omit-xml-declaration="no"/>
<table>foo</table>

</jsp:root>

Syntax

No other attributes are defined in this element.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" body...
</jsp:root>

The one valid, mandatory, attribute of jsp:root is the version of the JSP
specification used:

JSP.6.3.3 The jsp:output Element

The jsp:output element can be used in JSP documents and in tag files in XML
syntax. The jsp:output element is described in detail in Section JSP.5.16,
“<jsp:output>”.

JSP.6.3.4 The jsp:directive.page Element

The jsp:directive.page element defines a number of page dependent properties
and communicates these to the JSP container. This element must be a child of the
root element. Its syntax is:

<jsp:directive.page page_directive_attr_list />

Where page_directive_attr_list is as described in Section JSP.1.10.1, “The
page Directive”.

The interpretation of a jsp:directive.page element is as described in
Section JSP.1.10.1, “The page Directive”, and its scope is the JSP document and
any fragments included through an include directive.

Table JSP.6-2 Attributes for the <jsp:root> standard action

version (required) The version of the JSP specification used in this
page. Valid values are "1.2", "2.0", and "2.1". It is a
translation error if the container does not support the
specified version.

JSP DOCUMENTS1-134

JavaServer Pages 2.1 Specification

JSP.6.3.5 The jsp:directive.include Element

The jsp:directive.include element is used to substitute text and/or code at JSP
page translation-time. This element can appear anywhere within a JSP document. Its
syntax is:

<jsp:directive.include file="relativeURLspec” />

The interpretation of a jsp:directive.include element is as in Section JSP.1.10.3,
“The include Directive”.

The XML view of a JSP page does not contain jsp:directive.include elements,
rather the included file is expanded in-place. This is done to simplify validation.

JSP.6.3.6 Additional Directive Elements in Tag Files

Chapter JSP.8, “Tag Files” describes the tag, attribute and variable directives,
which can be used in tag files. The XML syntax for these directives is the same as in
the XML view (see Section JSP.10.1.14, “The tag Directive”, Section JSP.10.1.15,
“The attribute Directive”, and Section JSP.10.1.16, “The variable Directive” for
details).

JSP.6.3.7 Scripting Elements

The usual scripting elements: declarations, scriptlets and expressions, can be
used in JSP documents, but the only valid forms for these elements in a JSP docu-
ment are the XML syntaxes; i.e. those using the elements jsp:declaration, jsp:script-

let and jsp:expression.
The jsp:declaration element is used to declare scripting language constructs that

are available to all other scripting elements. A jsp:declaration element has no
attributes and its body is the declaration itself. The interpretation of a jsp:declara-

tion element is as in Section JSP.1.12.1, “Declarations”. Its syntax is:

<jsp:declaration> declaration goes here </jsp:declaration>

The jsp:scriptlet element is used to describe actions to be performed in response
to some request. Scriptlets are program fragments. A jsp:scriptlet element has no
attributes and its body is the program fragment that comprises the scriptlet. The
interpretation of a jsp:scriptlet element is as in Section JSP.1.12.2, “Scriptlets”. Its
syntax is:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

Syntactic Elements in JSP Documents 1-135

JavaServer Pages 2.1 Specification

The jsp:expression element is used to describe complete expressions in the
scripting language that get evaluated at response time. A jsp:expression element
has no attributes and its body is the expression. The interpretation of a jsp:expres-

sion element is as in Section JSP.1.12.3, “Expressions”. Its syntax is:

<jsp:expression> expression goes here </jsp:expression>

JSP.6.3.8 Other Standard Actions

The standard actions of Chapter JSP.5, “Standard Actions” use a syntax that is
consistent with XML syntax and they can be used in JSP documents and in tag files
in XML syntax.

JSP.6.3.9 Template Content

A JSP page has no structure on its template content, and, correspondingly,
imposes no constraints on that content. On the other hand, JSP documents have
structure and some constraints are needed.

JSP documents can generate unconstrained content using jsp:text, as defined
in Section JSP.5.15, “<jsp:text>”. Jsp:text can be used to generate totally fixed
content but it can also be used to generate some dynamic content, as described in
Section JSP.6.3.10 below.

Fixed structured content can be generated using XML fragments. A template
XML element, an element that represents neither a standard action nor a custom
action, can appear anywhere where a jsp:text may appear in a JSP document. The
interpretation of such an XML element is to pass its textual representation to the
current value of out, after the whitespace processing described in
Section JSP.6.2.3.

For example, if the variable i has the value 3, and the JSP document is of the
form. :

Table JSP.6-3 Example 1 - Input

LineNo Source Text

1 <hello>

2 <hi>

3 <jsp:text> hi you all

4 </jsp:text>${i}

5 </hi>

6 </hello>

JSP DOCUMENTS1-136

JavaServer Pages 2.1 Specification

The result is:

JSP.6.3.10 Dynamic Template Content

Custom actions can be used to generate any content, both structured and
unstructured. Future versions of the JSP specification may allow for custom
actions to check constraints on the generated content (see Section JSP.6.5.1) but
the current specification has no standards support for any such constraints.

The most flexible standard mechanism for dynamic content is jsp:element.
jsp:element, together with jsp:attribute and jsp:body can be used to generate any
element. Further details of jsp:element, jsp:attribute and jsp:body are given in
Section JSP.5.14, “<jsp:element>”, in Section JSP.5.10, “<jsp:attribute>” and in
Section JSP.5.11, “<jsp:body>”. The following example is from that section

<jsp:element
name=”${content.headerName}”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:attribute name=”lang”>${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

In some cases, the dynamic content that is generated can be described as
simple substitutions on otherwise static templates. JSP documents can have XML
templates where EL expressions are used as the values of the body or of attributes.
For instance, the next example uses the expression table.indent as the value of an
attribute, and the expression table.value as that for the body of an element:

<table indent="${table.indent}">
<row>${table.value}</row>

</table>

JSP.6.4 Examples of JSP Documents

The following sections provide several annotated examples of JSP documents.

Table JSP.6-4 Example 1 - Output

LineNo Output Text

1 <hello><hi> hi you all

2 3</hi></hello>

Examples of JSP Documents 1-137

JavaServer Pages 2.1 Specification

JSP.6.4.1 Example: A simple JSP document

This simple JSP document generates a table with 3 rows with numeric values 1,
2, 3. The JSP document uses template XML elements intermixed with actions from
the JSP Standard Tag Library.

<table size="${3}">
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="${3}">

<row>${counter}</row>
</c:forEach>

</table>

Some comments:

• The XML template elements are <table> and <row>. The custom action ele-
ment is <c:forEach>

• The JSP standard tag library is introduced through the use of its URI
namespace and the specific prefix used, c in this case, is irrelevant. The prefix
is introduced in a non-root element, and the top element of the document is
still <table>.

• The expression ${counter} is used within the <row> template element.

• The expression ${3} (3 would have been equally good, but an expression is
used for expository reasons) is used within the value of an attribute in both the
XML template element <table> and in the custom action element
<c:forEach>.

• The JSP document does not have an xml declaration - we are assuming the en-
coding of the file did not require it, e.g. it used UTF-8, - but the output will in-
clude an xml declaration due to the defaulting rules and to the absence of
jsp:output element directing the container to do otherwise.

The JSP document above does not generate an XML document that uses
namespaces, but the next example does.

JSP DOCUMENTS1-138

JavaServer Pages 2.1 Specification

JSP.6.4.2 Example: Generating Namespace-aware documents

<table
xmlns="http://table.com/Table1"
size="${3}">
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="${3}">

<row>${counter}</row>
</c:forEach>

</table>

This example is essentially the same as the one above, except that a default
namespace is introduced in the top element The namespace applies to the unquali-
fied elements: <table> and <row>. Also note that if the default namespace were to
correspond to a custom action, then the elements so effected would be interpreted as
invocations on custom actions or tags.

Although the JSP container understands that this document is a namespace-
aware document. the JSP 2.0 container does not really understand that the
generated content is a well-formed XML document and, as the next example
shows, a JSP document can generate other types of content.

JSP.6.4.3 Example: Generating non-XML documents

<jsp:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>
</jsp:root>

This example just generates 123. There is no xml declaration generated because
there is no <jsp:output> element to modify the default rule for when a JSP docu-
ment has <jsp:root>. No additional whitespace is introduced because there is none
within the <jsp:text> element.

The previous example used elements in the JSP namespace. That example
used the jsp prefix, but, unlike with JSP pages in JSP syntax, the name of the
prefix is irrelevant (although highly convenient) in JSP documents: the JSP URI is

Examples of JSP Documents 1-139

JavaServer Pages 2.1 Specification

the only important indicative and the corrent URI should be used, and introduced
via a namespace attribute.

For example, the same output would be generated with the following modifica-
tion of the previous example:

<wombat:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:wombat="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<wombat:text>${counter}</wombat:text>

</c:forEach>
</wombat:root>

On the other hand, although the following example uses the jsp prefix the URI
used in the namespace attribute is not the JSP URI and the JSP document will
generate as output an XML document with root <jsp:root> using the URI "http://
johnsonshippingproducts.com".

<jsp:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://johnsonshippingproducts.com"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>
</jsp:root>

Finally, note that, since a JSP document is a well-formed, namespace-aware
document, prefixes, including jsp cannot be used without being introduced
through a namespace attribute.

JSP.6.4.4 Example: Using Custom Actions and Tag Files

Custom actions are frequently used within a JSP document to generate portions
of XML content. The JSP specification treats this content as plain text, with no
intepretation nor constraints imposed on it. Good practice, though, suggests abstrac-
tions that organize the content along well-formed fragments.

JSP DOCUMENTS1-140

JavaServer Pages 2.1 Specification

The following example generates an XHTML document using tag library
abstractions for presentation and data access, made available through the prefixes
u and data respectively.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:u="urn:jsptagdir:/WEB-INF/tags/mylib/"
xmlns:data="http://acme.com/functions">

<c:set var="title" value="Best Movies" />
<u:headInfo title="${title}"/>
<body>

<h1>${title}</h1>
<h2>List of Best Movies</h2>

<c:forEach var="m" varStatus="s" items="data:movieItems()">
${s.index}${m.title}

</c:forEach>

</body>
</html>

For convenience we use the <c:set> JSTL action, which defines variables and
associates values with them. This allows grouping in a single place of definitions
used elsewhere.

Notice that if the above example included a DOCTYPE declaration for
XHTML documents, it would not validate according to the DTD for XHTML
documents, because that DTD does not list any of the namespaces declared on the
<html> root element as valid attributes on the <html> element type.

However, to output a DOCTYPE, the <jsp:output> standard action specified
in JSP.5.16 could be used.

The action <u:headInfo> could be implemented either through a custom
action or through a tag. For example, as a tag it could be defined by the following
code:

Possible Future Directions for JSP documents 1-141

JavaServer Pages 2.1 Specification

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.tag />
<jsp:directive.attribute name=”title” required="true" />
<head>

<meta http-equiv="content-type"
content="text/html;charset=${pageCharSet}" />

<title>${title}</title>
</head>

</jsp:root>

where pageCharSet is a variable with a value as iso-8859-1.
Note that this tag is a JSP document (because of the jsp:root declaration), and,

as such, it is validated by the container. Also note that the content that is generated
in this case is not using QNames, which means that the interpretation of the
generated elements can be ’captured’ based on the invocation context. That is the
case here, as there is a default namespace active (that of XHTML) where the tag is
being invoked.

JSP.6.5 Possible Future Directions for JSP documents

This section is non-normative. Two features are sketched briefly here to elicit
input that could be used on future versions of the JSP specification.

JSP.6.5.1 Generating XML Content Natively

All JSP 2.0 content is textual, even when using JSP documents to generate
XML content. This is quite acceptable, and even ideal, for some applications, but in
some other applications XML documents are the main data type being manipulated.
For example, the data source may be an XML document repository, perhaps queried
using XQuery, some of the manipulation on this data internal to the JSP page will
use XML concepts (XPath, XSTL operations), and the generated XML document
may be part of some XML pipeline.

In one such application, it is appealing not to transform back and forth
between a stream of characters (text) and a parsed representation of the XML
document. The JSP expert group has explored different approaches on how such
XML-awareness could be added, and a future version of JSP could support this
functionality.

JSP DOCUMENTS1-142

JavaServer Pages 2.1 Specification

JSP.6.5.2 Schema and XInclude Support

The current specification only requires DTD validation support for JSP docu-
ments. A more flexible schema language, like XML Schema, could be useful and
could be explored by a future version of the JSP specification.

Similarly, future versions of the specification may also consider support for
XInclude.

1-143JavaServer Pages 2.1 Specification

C H A P T E R JSP.7
Tag Extensions

This chapter describes the tag library facility for introducing new actions into
a JSP page. The tag library facility includes portable run-time support, a validation
mechanism, and authoring tool support. Both the classic JSP 1.2 style tag extension
mechanism and the newer JSP 2.0 simple tag extension mechanism are described. In
Chapter JSP.8, “Tag Files”, a mechanism for authoring tag extensions using only
JSP syntax is described. This brings the power of tag extensions to page authors that
may not know the Java programming language.

This chapter also provides an overview of the tag library concept. It describes
the Tag Library Descriptor, and the taglib directive. A detailed description of the
APIs involved follows in Chapter JSP.13, “Tag Extension API”.

JSP.7.1 Introduction

A Tag Library abstracts functionality used by a JSP page by defining a special-
ized (sub)language that enables a more natural use of that functionality within JSP
pages.

The actions introduced by the Tag Library can be used by the JSP page author
in JSP pages explicitly, when authoring the page manually, or implicitly, when
using an authoring tool. Tag Libraries are particularly useful to authoring tools
because they make intent explicit and the parameters expressed in the action
instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using
the taglib directive. They are available for use in the page using the prefix given by
the directive. An action can create new objects that can be passed to other actions,
or can be manipulated programmatically through a scripting element in the JSP
page.

TAG EXTENSIONS1-144

JavaServer Pages 2.1 Specification

The semantics of a specific custom action in a tag library is described via a tag
handler class which is usually instantiated at runtime by the JSP page implementa-
tion class. When the tag library is well known to the JSP container
(Section JSP.7.3.9), the Container can use alternative implementations as long as the
semantics are preserved.

Tag libraries are portable: they can be used in any legal JSP page regardless of
the scripting language used in that page.

The tag extension mechanism includes information to:

• Execute a JSP page that uses the tag library.

• Author or modify a JSP page.

• Validate the JSP page.

• Present the JSP page to the end user.

A Tag Library is described via the Tag Library Descriptor (TLD), an XML
document that is described below.

JSP.7.1.1 Goals

The tag extension mechanism described in this chapter addresses the following
goals. It is designed to be:

• Portable - An action described in a tag library must be usable in any JSP con-
tainer.

• Simple - Unsophisticated users must be able to understand and use this mech-
anism. Vendors of JSP functionality must find it easy to make it available to
users as actions.

• Expressive - The mechanism must support a wide range of actions, including
nested actions, scripting elements inside action bodies, and creation, use, and
updating of scripting variables.

• Usable from different scripting languages - Although the JSP specification
currently only defines the semantics for scripts in the Java programming lan-
guage, we want to leave open the possibility of other scripting languages.

• Built upon existing concepts and machinery - We do not want to reinvent what
exists elsewhere. Also, we want to avoid future conflicts whenever we can pre-
dict them.

Introduction 1-145

JavaServer Pages 2.1 Specification

JSP.7.1.2 Overview

The processing of a JSP page conceptually follows these steps:

Parsing

JSP pages can be authored using two different syntaxes: a JSP syntax and an
XML syntax. The semantics and validation of a JSP syntax page is described with
reference to the semantics and validation of an equivalent document in the XML
syntax.

The first step is to parse the JSP page. The page that is parsed is as expanded
by the processing of include directives. Information in the TLD is used in this
step, including the identification of custom tags, so there is some processing of the
taglib directives in the JSP page.

Validation

The tag libraries in the XML document are processed in the order in which
they appear in the page.

Each library is checked for a validator class. If one is present, the whole
document is made available to its validate method as a PageData object. As of JSP
2.0, the Container must provide a jsp:id attribute. This information can be used to
provide location information on errors.

Each custom tag in the library is checked for a TagExtraInfo class. If one is
present, its validate method is invoked. The default implementation of validate is
to call isValid. See the APIs for more details.

Translation

Finally, the XML document is processed to create a JSP page implementation
class. This process may involve creating scripting variables. Each custom action
will provide information about variables, either statically in the TLD, or more
flexibly by using the getVariableInfo method of a TagExtraInfo class.

Execution

Once a JSP page implementation class has been associated with a JSP page,
the class will be treated as any other servlet class: Requests will be directed to
instances of the class. At run-time, tag handler instances will be created and
methods will be invoked in them.

TAG EXTENSIONS1-146

JavaServer Pages 2.1 Specification

JSP.7.1.3 Classic Tag Handlers

A classic tag handler is a Java class that implements the Tag, IterationTag, or
BodyTag interface, and is the run-time representation of a custom action.

The JSP page implementation class instantiates a tag handler object, or reuses
an existing tag handler object, for each action in the JSP page. The handler object
is a Java object that implements the javax.servlet.jsp.tagext.Tag interface. The
handler object is responsible for the interaction between the JSP page and
additional server-side objects.

There are three main interfaces: Tag, IterationTag, and BodyTag.

• The Tag interface defines the basic methods needed in all tag handlers. These
methods include setter methods to initialize a tag handler with context data and
attribute values of the action, and the doStartTag and doEndTag methods.

• The IterationTag interface is an extension to Tag that provides the additional
method, doAfterBody, invoked for the reevaluation of the body of the tag.

• The BodyTag interface is an extension of IterationTag with two new methods
for when the tag handler wants to manipulate the tag body: setBodyContent

passes a buffer, the BodyContent object, and doInitBody provides an opportuni-
ty to process the buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies making an existing Java object a tag handler.
There are also two support classes that can be used as base classes: TagSupport

and BodyTagSupport.
JSP 1.2 introduced a new interface designed to help maintain data integrity

and resource management in the presence of exceptions. The TryCatchFinally

interface is a “mix-in” interface that can be added to a class implementing any of
Tag, IterationTag, or BodyTag.

JSP.7.1.4 Simple Examples of Classic Tag Handlers

As examples, we describe prototypical uses of tag extensions, briefly sketching
how they take advantage of these mechanisms.

JSP.7.1.4.1 Plain Actions

The simplest type of action just does something, perhaps with parameters to
modify what the “something” is, and improve reusability.

This type of action can be implemented with a tag handler that implements the
Tag interface. The tag handler needs to use only the doStartTag method which is

Introduction 1-147

JavaServer Pages 2.1 Specification

invoked when the start tag is encountered. It can access the attributes of the tag
and information about the state of the JSP page. The information is passed to the
Tag object through setter method calls, prior to the call to doStartTag.

Since simple actions with empty tag bodies are common, the Tag Library
Descriptor can be used to indicate that the tag is always intended to be empty. This
indication leads to better error checking at translation time, and to better code
quality in the JSP page implementation class.

JSP.7.1.4.2 Actions with a Body

Another set of simple actions require something to happen when the start tag is
found, and when the end tag is found. The Tag interface can also be used for these
actions. The doEndTag is similar to the doStartTag method except that it is invoked
when the end tag of the action is encountered. The result of the doEndTag invocation
indicates whether the remainder of the page is to be evaluated or not.

JSP.7.1.4.3 Conditionals

In some cases, a body needs to be invoked only when some (possibly complex)
condition happens. Again, this type of action is supported by the basic Tag interface
through the use of return values in the doStartTag method.

JSP.7.1.4.4 Iterations

For iteration the IterationTag interface is needed. The doAfterBody method is
invoked to determine whether to reevaluate the body or not.

JSP.7.1.4.5 Actions that Process their Body

Consider an action that evaluates its body many times, creating a stream of
response data. The IterationTag protocol is used for this.

If the result of the reinterpretation is to be further manipulated for whatever
reason, including just discarding it, we need a way to divert the output of
reevaluations. This is done through the creation of a BodyContent object and use
of the setBodyContent method, which is part of the BodyTag interface. BodyTag

also provides the doInitBody method which is invoked after setBodyContent and
before the first body evaluation provides an opportunity to interact with the body.

JSP.7.1.4.6 Cooperating Actions

Cooperating actions may offer the best way to describe a desired functionality.
For example, one action may be used to describe information leading to the creation

TAG EXTENSIONS1-148

JavaServer Pages 2.1 Specification

of a server-side object, while another action may use that object elsewhere in the
page. These actions may cooperate explicitly, via scoped variables: one action cre-
ates an object and gives it a name; the other refers to the object through the name.

Two actions can also cooperate implicitly. A flexible and convenient
mechanism for action cooperation uses the nested structure of the actions to
describe scoping. This is supported in the specification by providing each tag
handler with its parent tag handler (if any) through the setParent method. The find-

AncestorWithClass static method in TagSupport can then be used to locate a tag
handler, and, once located, to perform valid operations on the tag handler.

JSP.7.1.4.7 Actions Defining Scripting Variables

A custom action may create server-side objects and make them available to
scripting elements by creating or updating the scripting variables. The variables thus
affected are part of the semantics of the custom action and are the responsibility of
the tag library author.

This information is used at JSP page translation time and can be described in
one of two ways: directly in the TLD for simple cases, or through subclasses of
TagExtraInfo. Either mechanism will indicate the names and types of the scripting
variables.

At request time the tag handler will associate objects with the scripting
variables through the pageContext object.

It is the responsibility of the JSP page translator to automatically supply the
code required to do the “synchronization” between the pageContext values and the
scripting variables.

There are some sections of JSP where scripting is not allowed. For example,
this is the case in a tag body where the body-content is declared as ‘scriptless’, or
in a page where <scripting-invalid> is true. In these sections, it is not possible to
access scripting variables directly via scriptlets or expressions, and therefore the
container need not synchronize them. Instead, the page author can use the EL to
access the pageContext values.

JSP.7.1.5 Simple Tag Handlers

The API and invocation protocol for classic tag handlers is necessarily some-
what complex because scriptlets and scriptlet expressions in tag bodies can rely on
surrounding context defined using scriptlets in the enclosing page.

With the advent of the Expression Language (EL) and JSP Standard Tag
Library (JSTL), it is now feasible to develop JSP pages that do not need scriptlets

Introduction 1-149

JavaServer Pages 2.1 Specification

or scriptlet expressions. This allows us to define a tag invocation protocol that is
easier to use for many use cases.

In that interest, JSP 2.0 introduces a new type of tag extension called a Simple
Tag Extension. Simple Tag Extensions can be written in one of two ways:

• In Java, by defining a class that implements the javax.servlet.jsp.tagext.Simple-

Tag interface. This class is intended for use by advanced page authors and tag
library developers who need the flexibility of the Java language in order to
write their tag handlers. The javax.servlet.jsp.tagext.SimpleTagSupport class
provides a default implementation for all methods in SimpleTag.

• In JSP, using tag files. This method can be used by page authors who do not
know Java. It can also be used by advanced page authors or tag library devel-
opers who know Java but are producing tag libraries that are presentation-cen-
tric or can take advantage of existing tag libraries. See Chapter JSP.8, “Tag
Files” for more details.

The lifecycle of a Simple Tag Handler is straightforward and is not
complicated by caching semantics. Once a Simple Tag Handler is instantiated by
the Container, it is executed and then discarded. The same instance must not be
cached and reused. Initial performance metrics show that caching a tag handler
instance does not necessarily lead to greater performance, and to accommodate
such caching makes writing portable tag handlers difficult and makes the tag
handler prone to error.

In addition to being simpler to work with, Simple Tag Extensions do not
directly rely on any servlet APIs, which allows for potential future integration
with other technologies. This is facilitated by the JspContext class, which Page-

Context now extends. JspContext provides generic services such as storing the
JspWriter and keeping track of scoped attributes, whereas PageContext has func-
tionality specific to serving JSPs in the context of servlets. Whereas the Tag inter-
face relies on PageContext, SimpleTag only relies on JspContext.

The body of a Simple Tag, if present, is translated into a JSP Fragment and
passed to the setJspBody method. The tag can then execute the fragment as many
times as needed. See Section JSP.7.1.6 for more details on JSP Fragments.

Because JSP Fragments do not support scriptlets, the <body-content> of a
SimpleTag cannot be "JSP". A JSP page is invalid if it references a custom tag
whose tag handler implements the SimpleTag interface and whose <body-
content> is equal to "JSP" as per the supporting TLD.

TAG EXTENSIONS1-150

JavaServer Pages 2.1 Specification

JSP.7.1.6 JSP Fragments

During the translation phase, various pieces of the page are translated into
implementations of the javax.servlet.jsp.tagext.JspFragment abstract class, before
being passed to a tag handler. This is done automatically for any JSP code in the
body of a named attribute (one that is defined by <jsp:attribute>) that is declared to
be a fragment, or of type JspFragment, in the TLD. This is also automatically done
for the body of any tag handled by a Simple Tag handler. Once passed in, the tag
handler can then evaluate and re-evaluate the fragment as many times as needed,
or even pass it along to other tag handlers, in the case of Tag Files.

A JSP fragment can be parameterized by a tag handler by setting page-scoped
attributes in the JspContext associated with the fragment. These attributes can then
be accessed via the EL.

A translation error must occur if a piece of JSP code that is to be translated
into a JSP Fragment contains scriptlets or scriptlet expressions.

See Chapter JSP.13, “Tag Extension API” for more details on the JspFragment

abstract class.

JSP.7.1.7 Simple Examples of Simple Tag Handlers

In this section, we revisit the prototypical uses of classic tag extensions, as was
presented in Section JSP.7.1.4, and briefly describe how they are implemented using
simple tag handlers.

JSP.7.1.7.1 Plain Actions

To implement plain actions, the tag library developer creates a class that
extends SimpleTagSupport and implements the doTag method. The details on
accessing attributes and enforcing an empty body are the same as with classic tag
handlers. By default, the rest of the page will be evaluated after invoking doTag.
To signal that the page is to be skipped, doTag throws SkipPageException.

JSP.7.1.7.2 Actions with a Body

To implement actions with a body, the tag library developer implements doTag

and invokes the body at any point by calling invoke on the JspFragment object
passed in via the setJspBody method. The tag handler can provide the fragment
access to variables through the JspContext object.

Introduction 1-151

JavaServer Pages 2.1 Specification

JSP.7.1.7.3 Conditionals

All conditional logic is handled in the doTag method. If the body is not to be
invoked, the tag library developer simply does not call invoke on the JspFragment

object passed in via setJspBody.

JSP.7.1.7.4 Iterations

All iteration logic is handled in the doTag method. The tag library developer
simply calls invoke on the JspFragment object passed in via setJspBody as many
times as needed.

JSP.7.1.7.5 Actions that Process their Body

To divert the result of the body invocation, the tag library developer passes a
java.io.Writer object to the invoke method on the body JspFragment. Unlike the stan-
dard tag handler’s BodyContent solution, the result of the invocation does not need
to be buffered.

JSP.7.1.7.6 Cooperating Actions

Cooperating actions work the same way as with classic tag handlers. A setPar-

ent method is available in the SimpleTag interface and is called by the container
before calling doTag if one tag invocation is nested within another. A findAncestor-

WithClass method is available on SimpleTagSupport. This should be used, instead of
TagSupport.findAncestorWithClass(), in all cases where the desired return value may
implement SimpleTag.

Note that SimpleTag does not extend Tag. Because of this, the JspTag common
base is used in these new APIs instead of Tag. Furthermore, because Tag.setParent

only accepts an object of type Tag, tag collaboration becomes more difficult when
classic tag handlers are nested inside SimpleTag custom actions.

To make things easier, the javax.servlet.jsp.tagext.TagAdapter class can wrap
any SimpleTag and expose it as if it were a Tag instace. The original JspTag can be
retrieved through its getAdaptee method. Whenever calling the setParent method
on a classic Tag in a case where the outer tag does not implement Tag, the JSP
Container must construct a new TagAdapter and call setParent on the classic Tag

passing in the adapter.
See Chapter JSP.13, “Tag Extension API” for more details on these APIs.

TAG EXTENSIONS1-152

JavaServer Pages 2.1 Specification

JSP.7.1.8 Attributes With Dynamic Names

Prior to JSP 2.0, the name of every attribute that a tag handler accepted was pre-
determined at the time the tag handler was developed. It is sometimes useful, how-
ever, to be able to define a tag handler that accepts attributes with dynamic names
that are not known until the page author uses the tag. For example, it is time con-
suming and error-prone to anticipate what attributes a user may wish to pass to a tag
that mimics an HTML element.

New to JSP 2.0 is the ability to declare that a tag handler accepts additional
attributes with dynamic names. This is done by having the tag handler implement
the javax.servlet.jsp.tagext.DynamicAttributes interface. See Chapter JSP.13, “Tag
Extension API” for more details on this interface.

JSP.7.1.9 Event Listeners

A tag library may include classes that are event listeners (see the Servlet 2.5
specification). The listeners classes are listed in the tag library descriptor and the
JSP container automatically instantiates them and registers them. A Container is
required to locate all TLD files (see Section JSP.7.3.1 for details on how they are
identified), read their listener elements, and treat the event listeners as extensions of
those listed in web.xml.

The order in which the listeners are registered is undefined, but they are
registered before application start.

JSP.7.1.10 JspId Attribute

Sometimes it may be useful to provide unique identifications for tag handlers.
A tag handler can implement the interface javax.servlet.jsp.tagext.JspIdConsumer

for such functionality. See section JSP.13.4 for more details.

JSP.7.1.11 Resource Injection

The Java Metadata specification (JSR-175), which is part of J2SE 5.0 and
greater, provides a means of specifying configuration data in Java code. Metadata
in Java code is also referred to as annotations. In Java EE, annotations are used to
declare dependencies on external resources and configuration data in Java code
without the need to define that data in a configuration file.

Section SRV.14.5 of the Servlet Specification describes the behavior of
annotations and resource injection in Java EE technology compliant web
containers.

Tag Libraries 1-153

JavaServer Pages 2.1 Specification

In the JSP specification, tag handlers which implement interfaces javax.serv-

let.jsp.tagext.Tag and javax.servlet.jsp.tagext.SimpleTag may be annotated for
injection. In both cases, injection occurs immediately after an instance of the tag
handler is constructed, and before any of the tag properties are initialized.

Event Listeners (See Section JSP.7.1.9, “Event Listeners”) can also be
annotated for resource injection. Injection occurs immediately after an instance of
the event handler is constructed, and before it is registered.

The annotations supported are:

• @EJB, @EJBs

• @PersistenceContext, @PersistenceContexts

• @PersistenceUnit, @PersistenceUnits

• @PostConstruct, @PreDestroy

• @Resource, @Resources

• @WebServiceRef, @WebServiceRefs

Please see Section SRV.14.5 of the servlet specification for more details on
these annotations.

A JSP container that is not part of a Java EE technology-compliant
implementation is encouraged, but not required, to support resource injection.

Resource injection is not supported for JSP pages or tag files.

JSP.7.2 Tag Libraries

A tag library is a collection of actions that encapsulate some functionality to be
used from within a JSP page. A tag library is made available to a JSP page through a
taglib directive that identifies the tag library via a URI (Universal Resource Identi-
fier).

The URI identifying a tag library may be any valid URI as long as it can be
used to uniquely identify the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library
Description (TLD) file and with tag handler classes as indicated in
Section JSP.7.3 below.

TAG EXTENSIONS1-154

JavaServer Pages 2.1 Specification

JSP.7.2.1 Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept a tag library
that is packaged as a JAR file. When deployed in a JSP container, the standard JAR
conventions described in the Servlet 2.5 specification apply, including the conven-
tions for dependencies on extensions.

Packaged tag libraries must have at least one tag library descriptor file. The
JSP 1.1 specification allowed only a single TLD, in META-INF/taglib.tld, but as of
JSP 1.2 multiple tag libraries are allowed. See Section JSP.7.3.1 for how TLDs are
identified.

Both Classic and Simple Tag Handlers (implemented either in Java or as tag
files) can be packaged together.

JSP.7.2.2 Location of Java Classes

A tag library contains classes for instantiation at translation time and classes for
instantiation at request time. The former include classes such as TagLibraryValidator

and TagExtraInfo. The latter include tag handler and event listener classes.
The usual conventions for Java classes apply: as part of a web application,

they must reside either in a JAR file in the WEB-INF/lib directory, or in a directory
in the WEB-INF/classes directory.

A JAR containing packaged tag libraries must be dropped into the WEB-INF/

lib directory to make its classes available at request time (and also at translation
time, see Section JSP.7.3.7). The mapping between the URI and the TLD is
explained further below.

JSP.7.2.3 Tag Library directive

The taglib directive in a JSP page declares that the page uses a tag library,
uniquely identifies the tag library using a URI, and associates a tag prefix with usage
of the actions in the library.

A JSP container maps the URI used in the taglib directive into a Tag Library
Descriptor in two steps: it resolves the URI into a TLD resource path, and then
derives the TLD object from the TLD resource path.

If the JSP container cannot locate a TLD resource path for a given URI, a fatal
translation error shall result. Similarly, it is a fatal translation error for a URI
attribute value to resolve to two different TLD resource paths.

It is a fatal translation error for the taglib directive to appear after actions using
the prefix introduced by it.

The Tag Library Descriptor 1-155

JavaServer Pages 2.1 Specification

JSP.7.3 The Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag
library. The TLD for a tag library is used by a JSP container to interpret pages that
include taglib directives referring to that tag library. The TLD is also used by JSP
page authoring tools that will generate JSP pages that use a library, and by authors
who do the same manually.

The TLD includes documentation on the library as a whole and on its
individual tags, version information on the JSP container and on the tag library,
and information on each of the actions defined in the tag library.

The TLD may name a TagLibraryValidator class that can validate that a JSP
page conforms to a set of constraints expected by the tag library.

Each action in the library is described by giving its name, the class of its tag
handler, information on any scripting variables created by the action, and
information on attributes of the action. Scripting variable information can be given
directly in the TLD or through a TagExtraInfo class. For each valid attribute there
is an indication about whether it is mandatory, whether it can accept request-time
expressions, and additional information.

A TLD file is useful for providing information on a tag library. It can be read
by tools without instantiating objects or loader classes. Our approach conforms to
the conventions used in other Java EE technologies.

As of JSP 2.0, the format for the Tag Library Descriptor is represented in
XML Schema. This allows for a more extensible TLD that can be used as a true
single-source document.

JSP.7.3.1 Identifying Tag Library Descriptors

Tag library descriptor files have names that use the extension .tld, and the
extension indicates a tag library descriptor file. When deployed inside a JAR file,
the tag library descriptor files must be in the META-INF directory, or a subdirectory
of it. When deployed directly into a web application, the tag library descriptor
files must always be in the WEB-INF directory, or some subdirectory of it. TLD
files should not be placed in /WEB-INF/classes or /WEB-INF/lib, and must not be

placed inside /WEB-INF/tags or a subdirectory of it, unless named implicit.tld and

intended to configure an implicit tag library with its JSP version and tlib-version.
The XML Schema for a TLD document is http://java.sun.com/xml/ns/j2ee/

web-jsptaglibrary_2_1.xsd. See Section JSP.C.1, “XML Schema for TLD, JSP
2.1”.

Note that tag files, which collectively form tag libraries, may or may not have
an explicitly defined TLD. In the case that they do not, the container generates an

TAG EXTENSIONS1-156

JavaServer Pages 2.1 Specification

implicit TLD that can be referenced using the tagdir attribute of the taglib

directive. More details about identifying this implicit Tag Library Descriptor can
be found in Chapter JSP.8, “Tag Files”.

JSP.7.3.2 TLD resource path

A URI in a taglib directive is mapped into a context relative path (as discussed in
Section JSP.1.2.1, “Relative URL Specifications”). The context relative path is a
URL without a protocol and host components that starts with / and is called the TLD
resource path.

The TLD resource path is interpreted relative to the root of the web
application and should resolve to a TLD file directly, or to a JAR file that has a
TLD file at location META-INF/taglib.tld. If the TLD resource path is not one of
these two cases, a fatal translation error will occur.

The URI describing a tag library is mapped to a TLD resource path though a
taglib map, and a fallback interpretation that is to be used if the map does not
contain the URI. The taglib map is built from an explicit taglib map in web.xml

(described in Section JSP.7.3.3) that is extended with implicit entries deduced
from packaged tag libraries in the web application (described in
Section JSP.7.3.4), and implicit entries known to the JSP container. The fallback
interpretation is targetted to a casual use of the mechanism, as in the development
cycle of the Web Application; in that case the URI is interpreted as a direct path to
the TLD (see Section JSP.7.3.6.2).

The following order of precedence applies (from highest to lowest) when
building the taglib map (see the following sections for details):

1. If the container is Java EE platform compliant, the Map Entries for the tag li-
braries that are part of the Java EE platform. This currently includes the Jav-
aServer Pages Standard Tag Library libraries and the JavaServer Faces
libraries.

2. Taglib Map in web.xml

3. Implicit Map Entries from TLDs

■ TLDs in JAR files in WEB-INF/lib

■ TLDs under WEB-INF

4. Implicit Map Entries from the Container

The Tag Library Descriptor 1-157

JavaServer Pages 2.1 Specification

JSP.7.3.3 Taglib Map in web.xml

The web.xml file can include an explicit taglib map between URIs and TLD
resource paths described using the taglib elements of the Web Application Deploy-
ment descriptor in WEB-INF/web.xml. See Section JSP.3.2, “Taglib Map” for more
details.

JSP.7.3.4 Implicit Map Entries from TLDs

The taglib map described in web.xml is extended with new entries extracted
from TLD files in the Web Application. The new entries are computed as follows:

• The container searches for all files with a .tld extension under /WEB-INF or a
subdirectory, and inside JAR files that are in /WEB-INF/lib. When examining a
JAR file, only resources under /META-INF or a subdirectory are considered.
The order in which these files are searched for is implementation-specific and
should not be relied on by web applications.

• Each TLD file is examined. If it has a <uri> element, then a new <taglib> ele-
ment is created, with a <taglib-uri> subelement whose value is that of the <uri>

element, and with a <taglib-location> subelement that refers to the TLD file.

• If the created <taglib> element has a different <taglib-uri> to any in the taglib
map, it is added.

This mechanism provides an automatic URI to TLD mapping as well as
supporting multiple TLDs within a packaged JAR. Note that this functionality
does not require explicitly naming the location of the TLD file, which would
require a mechanism like the jar:protocol.

Note also that the mechanism does not add duplicated entries.

JSP.7.3.5 Implicit Map Entries from the Container

The Container may also add additional entries to the taglib map. As in the previ-
ous case, the entries are only added for URIs that are not present in the map. Con-
ceptually the entries correspond to TLD describing these tag libraries.

These implicit map entries correspond to libraries that are known to the
Container, who is responsible for providing their implementation, either through
tag handlers, or via the mechanism described in Section JSP.7.3.9.

TAG EXTENSIONS1-158

JavaServer Pages 2.1 Specification

JSP.7.3.6 Determining the TLD Resource Path

The TLD resource path can be determined from the uri attribute of a taglib direc-
tive as described below. In the explanation below an absolute URI is one that starts
with a protocol and host, while a relative URI specification is as in section 2.5.2, i.e.
one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a
different implementation strategy as long as the result is preserved.

JSP.7.3.6.1 Computing TLD Locations

The taglib map generated in Sections JSP.7.3.3, JSP.7.3.4 and JSP.7.3.5 may
contain one or more <taglib></taglib> entries. Each entry is identified by a taglib_uri,
which is the value of the <taglib-uri> subelement. This taglib_uri may be an absolute
URI, or a relative URI spec starting with / or one not starting with /. Each entry
also defines a taglib_location as follows:

• If the <taglib-location> subelement is some relative URI specification that starts
with a / the taglib_location is this URI.

• If the <taglib-location> subelement is some relative URI specification that does
not start with /, the taglib_location is the resolution of the URI relative to /WEB-

INF/web.xml (the result of this resolution is a relative URI specification that
starts with /).

JSP.7.3.6.2 Computing the TLD Resource Path

The following describes how to resolve a taglib directive to compute the TLD
resource path. It is based on the value of the uri attribute of the taglib directive.

• If uri is abs_uri, an absolute URI

Look in the taglib map for an entry whose taglib_uri is abs_uri. If found, the
corresponding taglib_location is the TLD resource path. If not found, a translation
error is raised.

• If uri is root_rel_uri, a relative URI that starts with /

Look in the taglib map for an entry whose taglib_uri is root_rel_uri. If found,
the corresponding taglib_location is the TLD resource path. If no such entry is
found, root_rel_uri is the TLD resource path.

The Tag Library Descriptor 1-159

JavaServer Pages 2.1 Specification

• If uri is noroot_rel_uri, a relative URI that does not start with /

Look in the taglib map for an entry whose taglib_uri is noroot_rel_uri. If found,
the corresponding taglib_location is the TLD resource path. If no such entry is
found, resolve noroot_rel_uri relative to the current JSP page where the directive
appears; that value (by definition, this is a relative URI specification that starts
with /) is the TLD resource path. For example, if /a/b/c.jsp references
../../WEB-INF/my.tld, then if there is no taglib_location that matches
../../WEB-INF/my.tld, the TLD resource path would be /WEB-INF/my.tld.

JSP.7.3.6.3 Usage Considerations

The explicit web.xml map provides a explicit description of the tag libraries that
are being used in a web application.

The implicit map from TLDs means that a JAR file implementing a tag library
can be dropped in and used immediatedly through its stable URIs.

The use of relative URI specifications in the taglib map enables very short
names in the taglib directive. For example, if the map is:

<taglib>
 <taglib-uri>/myPRlibrary</taglib-uri>
 <taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-location>
</taglib>

then it can be used as:

<%@ taglib uri=”/myPRlibrary” prefix=”x” %>

Finally, the fallback rule allows a taglib directive to refer directly to the TLD.
This arrangement is very convenient for quick development at the expense of less
flexibility and accountability. For example, in the case above, it enables:

<%@ taglib uri=”/WEB-INF/tlds/PRlibrary_1_4.tld” prefix=”x” %>

JSP.7.3.7 Translation-Time Class Loader

The set of classes available at translation time is the same as that available at
runtime: the classes in the underlying Java platform, those in the JSP container, and
those in the class files in WEB-INF/classes, in the JAR files in WEB-INF/lib, and,
indirectly those indicated through the use of the class-path attribute in the META-

INF/MANIFEST file of these JAR files.

TAG EXTENSIONS1-160

JavaServer Pages 2.1 Specification

JSP.7.3.8 Assembling a Web Application

As part of the process of assembling a web application, the Application Assem-
bler will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirecto-
ries, place JSP pages, servlet classes, auxiliary classes, and tag libraries in the proper
places, and create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard JAR format can be
dropped directly into WEB-INF/lib. This automatically adds all the TLDs inside the
JAR, making their URIs advertised in their <uri> elements visible to the URI to
TLD map. The assembler may create taglib entries in web.xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change
information that customizes a tag library; see Section JSP.7.5.3.

JSP.7.3.9 Well-Known URIs

A JSP container may “know of” some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see
the behavior as that described by the required, portable tag library description
described by the URI.

A JSP container must always use the mapping specified for a URI in the
web.xml deployment descriptor if present. If the deployer wants to use the
platform-specific implementation of the well-known URI, the mapping for that
URI should be removed at deployment time.

JSP.7.3.10 Tag and Tag Library Extension Elements

The JSP 2.0 Tag Library Descriptor supports the notion of Tag Extension Ele-
ments and Tag Library Extension Elements. These are elements added to the TLD
by the tag library developer that provide additional information about the tag, using
a schema defined outside of the JSP specification.

The information contained in these extensions is intended to be used by tools
only, and is not accessible at compile-time, deployment-time, or run-time. JSP
containers must not alter their behavior based on the content, the presence, or the
absence of a particular Tag or Tag Library Extension Element. In addition, JSP
containers must consider invalid any tag library that specifies mustUnder-

stand=”true” for any Tag or Tag Library Extension element. Any attempt to use an
invalid tag library must produce a translation error. This is to preserve application
compatibility across containers.

The Tag Library Descriptor 1-161

JavaServer Pages 2.1 Specification

The JSP container may use schema to validate the structure of the Tag Library
Descriptor. If it does so, any new content injected into Tag or Tag Library
Extension elements must not be validated by the JSP Container.

Tag Library Extension Elements provide extension information at the tag
library level, and are specified by adding a <taglib-extension> element as a child of
<taglib>. Tag Extension Elements provide extension information at the tag level,
and are specified by adding a <tag-extension> element as a child of <tag>. To use
these elements, an XML namespace must first be defined and the namespace must
be imported into the TLD.

There are efforts under way in the JCP (Java Community Process) to define
standard extensions for enhanced tool support for JSP page authoring. Such
standard extensions should be used where appropriate.

JSP.7.3.10.1 Example

In the following non-normative example, a fictitious company called ACME
has decided to enhance the page author’s experience by defining a set of Tag and
Tag Library Extension elements that cause sounds to be played when inserting
tags in a document.

In this hypothetical example, ACME has published an XML Schema at http://

www.acme.com/acme.xsd that defines the extensions, and has provided plug-ins
for various JSP-capable IDEs to recognize these extension elements.

The following example tag library uses ACME’s extensions to provide helpful
voice annotations that describe how to use each tag in the tag library. Relevant
parts highlighted in bold:

<taglib xmlns=”http://java.sun.com/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:acme=”http://acme.com/”

xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_1.xsd

http://acme.com/ http://acme.com/acme.xsd”

version=”2.1”>

<description>

Simple Math Tag Library.

Contains ACME sound extensions with helpful voice annotations

that describe how to use the tags in this library.

</description>

<tlib-version>1.0</tlib-version>

<short-name>math</short-name>

<tag>

TAG EXTENSIONS1-162

JavaServer Pages 2.1 Specification

<description>Adds two numbers</description>

<display-name>add</display-name>

<name>add</name>

<tag-class>com.foobar.tags.AddTag</tag-class>

<body-content>empty</body-content>

<attribute>

<name>x</name>

<type>java.lang.Double</type>

</attribute>

<attribute>

<name>y</name>

<type>java.lang.Double</type>

</attribute>

<tag-extension namespace=”http://acme.com/”>

<!-- Extensions for tag sounds -->

<extension-element xsi:type=”acme:acme-soundsType”>

<acme:version>1.5</acme:version>

<!-- Sound played for help on the add tag -->

<acme:tag-sound>sounds/add.au</acme:tag-sound>

<!-- Sound played for help on the x attribute -->

<acme:attribute-sound name=”x”>

sounds/add-x.au

</acme:attribute-sound>

<!-- Sound that’s played for help on the yattribute -->

<acme:attribute-sound name=”y”>

sounds/add-y.au

</acme:attribute-sound>

</extension-element>

</tag-extension>

</tag>

<taglib-extension namespace=”http://acme.com/”>

<!-- Extensions for taglibrary sounds-->

<extension-element xsi:type=”acme:acme-soundsType”>

<acme:version>1.5</acme:version>

<!-- Sound played when author imports this taglib -->

<acme:import-sound>sounds/intro.au</acme:import-sound>

</extension-element>

</taglib-extension>

</taglib>

The corresponding acme.xsd file would look something like:

<?xml version=”1.0” encoding=”UTF-8”?>

The Tag Library Descriptor 1-163

JavaServer Pages 2.1 Specification

<xsd:schema

 targetNamespace=”http://acme.com/”

 xmlns:j2ee=”http://java.sun.com/xml/ns/j2ee”

 xmlns:acme=”http://acme.com/”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns:xml=”http://www.w3.org/XML/1998/namespace”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

 version=”1.0”>

<xsd:annotation>

 <xsd:documentation>

This an XML Schema for sample Acme taglib extensibility

elements, used to test TLD extensibility.

 </xsd:documentation>

 </xsd:annotation>

 <!-- ** -->

 <xsd:import namespace=”http://java.sun.com/xml/ns/j2ee”

schemaLocation=”../web-jsptaglibrary_2_0.xsd” />

 <!-- ** -->

 <xsd:complexType name=”acme-soundsType”>

 <xsd:annotation>

 <xsd:documentation>

Extension for sounds associated with a tag

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base=”j2ee:extensibleType”>

<xsd:sequence>

<xsd:element name=”version” type=”xsd:string”/>

<xsd:element name=”tag-sound” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”attribute-sound”

minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base=”xsd:string”>

<xsd:attribute name=”name” use=”required”

type=”xsd:string” />

</xsd:extension>

TAG EXTENSIONS1-164

JavaServer Pages 2.1 Specification

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name=”import-sound” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ** -->

</xsd:schema>

JSP.7.4 Validation

There are a number of reasons why the structure of a JSP page should conform
to some validation rules:

• Request-time semantics; e.g. a subelement may require the information from
some enclosing element at request-time .

• Authoring-tool support; e.g. a tool may require an ordering in the actions.

• Methodological constraints; e.g. a development group may want to constrain
the way some features are used.

Validation can be done either at translation-time or at request-time. In general
translation-time validation provides a better user experience, and the JSP 2.1
specification provides a very flexible translation-time validation mechanism.

JSP.7.4.1 Translation-Time Mechanisms

Some translation-time validation is represented in the Tag Library Descriptor. In
some cases a TagExtraInfo class needs to be provided to supplement this informa-
tion.

JSP.7.4.1.1 Attribute Information

The Tag Library Descriptor contains the basic syntactic information. In particu-
lar, the attributes are described including their name, whether they are optional or

Validation 1-165

JavaServer Pages 2.1 Specification

mandatory, and whether they accept request-time expressions. Additionally the
body-content element can be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author
can assume that the tag handler instance corresponds to an action that satisfies all
constraints indicated in the TLD.

JSP.7.4.1.2 Validator Classes

A TagLibraryValidator class may be listed in the TLD for a tag library to request
that a JSP page be validated. The XML view of a JSP page is exposed through a
PageData class, and the validator class can do any checks the tag library author may
have found appropriate.

The JSP container must uniquely identify all XML elements in the XML view
of a JSP page through a jsp:id attribute. This attribute can be used to provide better
information on the location of an error.

The validator class mechanism is new as of the JSP 1.2 specification. A TagL-

ibraryValidator can be passed some initialization parameters in the TLD. This eases
the reuse of validator classes. We expect that validator classes will be written
based on different XML schema mechanisms (DTDs, XSchema, Relaxx, others).
Standard validator classes may be incorporated into a later version of the JSP
specification if a clear schema standard appears at some point.

JSP.7.4.1.3 TagExtraInfo Class Validation

Additional translation-time validation can be done using the validate method in
the TagExtraInfo class. The validate method is invoked at translation-time and is
passed a TagData instance as its argument. As of JSP 2.0, the default behavior of val-

idate is to call the isValid method.
The isValid mechanism was the original validation mechanism introduced in

JSP 1.1 with the rest of the Tag Extension machinery. Tag libraries that are
designed to run in JSP 1.2 containers or higher should use the validator class
mechanism. Tag libraries that are designed to run in JSP 2.0 containers or higher
that wish to use the TagExtraInfo validation mechanism are encouraged to
implement the validate method in favor of the isValid method due to the ability to
provide better validation messages. Either method will work, though
implementing both is not recommended.

JSP.7.4.2 Request-Time Errors

In some cases, additional request-time validation will be done dynamically
within the methods in the tag handler. If an error is discovered, an instance of JspEx-

TAG EXTENSIONS1-166

JavaServer Pages 2.1 Specification

ception can be thrown. If uncaught, this object will invoke the errorpage mechanism
of the JSP specification.

JSP.7.5 Conventions and Other Issues

This section is not normative, although it reflects good design practices.

JSP.7.5.1 How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:

• Define a tag library.

• Add an action called defineObjects to define the desired objects.

The JSP page can make these objects available as follows:

<%@ taglib prefix="me" uri="......" %>
<me:defineObjects />
.... start using the objects....

This approach has the advantage of requiring no new machinery and of
making very explicit the dependency.

In some cases there may be an implementation dependency in making these
objects available. For example, they may be providing access to some
functionality that exists only in a particular implementation. This can be done by
having the tag extension class test at run-time for the existence of some
implementation dependent feature and raise a run-time error (this, of course,
makes the page not Java EE compliant).

This mechanism, together with the access to metadata information allows for
vendors to innovate within the standard.

Note – If a feature is added to a JSP specification, and a vendor also provides
that feature through its vendor-specific mechanism, the standard mechanism, as
indicated in the JSP specification will “win”. This means that vendor-specific
mechanisms can slowly migrate into the specification as they prove their useful-
ness.

Conventions and Other Issues 1-167

JavaServer Pages 2.1 Specification

JSP.7.5.2 Access to Vendor-Specific information

If a vendor wants to associate some information that is not described in the cur-
rent version of the TLD with some tag library, it can do so by inserting the informa-
tion in a document it controls, inserting the document in the WEB-INF portion of the
Web Application where the Tag Library resides, and using the standard Servlet 2.4
mechanisms to access that information.

JSP.7.5.3 Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example,
a tag library that provides access to databases may be customized with login and
password information.

There is no convenient place in web.xml in the Servlet 2.4 spec for customiza-
tion information A standardized mechanism is probably going to be part of a forth-
coming JSP specification, but in the meantime the suggestion is that a tag library
author place this information in a well-known location at some resource in the WEB-

INF/ portion of the Web Application and access it via the getResource call on the
ServletContext.

TAG EXTENSIONS1-168

JavaServer Pages 2.1 Specification

1-169JavaServer Pages 2.1 Specification

C H A P T E R JSP.8
Tag Files

This chapter describes the details of tag files, a JSP 2.0 facility that allows
page authors to author tag extensions using only JSP syntax. In the past, the ability
to encapsulate presentation logic into reusable, full-featured tag libraries was only
available to developers that had a reasonable amount of Java experience. Tag files
bring the power of reuse to the basic page author, who are not required to know
Java. When used together with JSP Fragments and Simple Tag Handlers, these con-
cepts have the ability to simplify JSP development substantially, even for developers
who do know Java.

JSP.8.1 Overview

As of JSP version 2.0, the JSP Compiler is required to recognize tag files. A
tag file is a source file that provides a way for a page author to abstract a segment
of JSP code and make it reusable via a custom action.

Tag files allow a JSP page author to create tag libraries using JSP syntax. This
means that page authors no longer need to know Java or ask someone who knows
Java to write a tag extension. Even for page authors or tag library developers who
know Java, writing tag files is more convenient when developing tags that
primarily output template text.

The required file extension for a tag file are .tag or .tagx. As is the case with
JSP files, the actual tag may be composed of a top file that includes other files that
contain either a complete tag or a segment of a tag file. Just as the recommended
extension for a segment of a JSP file is .jspf, the recommended extension for a
segment of a tag file is .tagf.

TAG FILES1-170

JavaServer Pages 2.1 Specification

JSP.8.2 Syntax of Tag Files

The syntax of a tag file is similar to that of a JSP page, with the following
exceptions:

• Directives - Some directives are not available or have limited availability, and
some tag file specific directives are available. See Section JSP.8.5, “Tag File
Directives” for a discussion on tag file directives.

• The <jsp:invoke> and <jsp:doBody> standard actions can only be used in Tag
Files.

The EBNF grammar in Section JSP.1.3.10, “JSP Syntax Grammar” describes
the syntax of tag files. The root production for a tag files is JSPTagDef.

See Section JSP.8.6 for details on tag files in XML syntax.

JSP.8.3 Semantics of Tag Files

For each tag file in the web application, a tag handler is made available to JSP
pages and other tag files. The specifics of how this is done are left up to the Con-
tainer implementation. For example, some Containers may choose to compile tag
files into Java tag handlers, whereas others may decide to interpret the tag handlers.

However the Container chooses to prepare the tag handler, the following
conditions must hold true for all tag handlers defined as tag files:

• The tag file implementation must keep a copy of the JspContext instance
passed to it by the invoking page via the setJspContext method. This is called
the Invoking JSP Context.

• The tag file implementation must create and maintain a second instance of
JspContext called a JSP Context Wrapper. If the Invoking JSP Context is an
instance of PageContext, the JSP Context Wrapper must also be an instance of
PageContext. This wrapper must be returned when getJspContext() is called.

• For each invocation to the tag, the JSP Context Wrapper must present a clean
page scope containing no initial elements. All scopes other than the page
scope must be identical to those in the Invoking JSP Context and must be
modified accordingly when updates are made to those scopes in the JSP Con-
text Wrapper. Any modifications to the page scope, however, must not affect
the Invoking JSP Context.

Semantics of Tag Files 1-171

JavaServer Pages 2.1 Specification

• For each attribute declared and specified, a page-scoped variable must be cre-
ated in the page scope of the JSP Context Wrapper, unless the attribute is a de-
ferred value or a deferred method, in which case the VariableMapper obtained
from the ELContext in the current pageContext is used to map the deferred
expression to the attribute name. The name of the variable must be the same
as the declared attribute name. The value of the variable must be the value of
the attribute passed in during invocation. For each attribute declared as op-
tional and not specified, no variable is created. If the tag accepts dynamic at-
tributes, then the names and values of those dynamic attributes must be
exposed to the tag file as specified in Table JSP.8-2.

If the attribute is a deferred-value, it is directly mapped. If the attribute is a de-
ferred-method, it is wrapped in a ValueExpression, and the resulting ValueEx-

pression is mapped.

There are two implications here. They are best illustrated by examples. Sup-
pose we have a tag file

tagf.tag:
<%attribute name="attr1" deferredValue="true"/>

<%attribute name="attr2" deferredMethod="true"/>

<c:out value="${attr1.bar}"/>

<h:commandButton value="#{attr1.foo}" action="#{attr2}"/>

used in test.jsp
<%taglib prefix="my" tagdir="/WEB-INF/tags"%>

<my:tagf attr1="#{someExpr}" attr2="#{someMethod}"/>

First, in tagf.tag, ${attr1.bar} will cause the immediate evaluation of the de-
ferred expression. Secondly, since the VariableMapper is used to resolve vari-
ables at EL parse time, a deferred expression such as #{attr1.foo} is not
dependent on attr1 anymore, so that it can be evaluated long after the end of
life of the tag file's pageContext. This is very useful for JavaServer Faces ap-
plications.

Since the EL syntax does not allow for invokation of the method in a Metho-

dExpression, the only allowable use of attr2 is to pass it to another tag that has
a deferred-method attribute, in the form of "#{attr2}".

TAG FILES1-172

JavaServer Pages 2.1 Specification

• For all intents and purposes other than for synchronizing the AT_BEGIN,
NESTED, and AT_END scripting variables, the effective JspContext for the tag
file is the JSP Context Wrapper. For example, the jspContext scripting variable
must point to the JSP Context Wrapper instead of the invoking JSP Context.

• The tag handler must behave as though a tag library descriptor entry was de-
fined for it, in accordance with the tag, attribute, and variable directives that
appear in the tag file translation unit.

It is legal for a tag file to forward to a page via the <jsp:forward> standard
action. Just as for JSP pages, the forward is handled through the request
dispatcher. Upon return from the RequestDispatcher.forward method, the
generated tag handler must stop processing of the tag file and throw javax.serv-

let.jsp.SkipPageException. Similarly, if a tag file invokes a Classic Tag Handler
which returns SKIP_PAGE from the doEndTag method, or if it invokes a Simple
Tag Handler which throws SkipPageException in the doTag method, the generated
tag handler must terminate and SkipPageException must be thrown. In either of
these two cases, the doCatch and doFinally methods must be called on enclosing
tags that implement the TryCatchFinally interface before returning. The doEndTag

methods of enclosing classic tags must not be called.
Care should be taken when invoking a classic tag handler from a tag file. In

general, SimpleTag Extensions can be used in environments other than servlet
environments. However, because the Tag interface relies on PageContext, which in
turn assumes a servlet environment, using classic tag handlers indirectly binds the
use of the tag file to servlet environments. Nonetheless, the JSP container must
allow such an invocation to occur. When a tag file attempts to invoke a classic tag
handler (i.e. one that implements the Tag interface), it must cast the JspContext

passed to the SimpleTag into a PageContext. In the event that the class cast fails,
the invocation of the classic tag fails, and a JspException must be thrown.

If a tag file in XML syntax contains a jsp:root element, the value of that
element’s version attribute must match the tag file’s JSP version. See
Section JSP.8.4.2, “Packaging in a JAR”, and Section JSP.8.4.3, “Packaging
Directly in a Web Application”, for how the JSP version of a tag file is
determined.

JSP.8.4 Packaging Tag Files

One of the goals of tag files as a technology is to make it as easy to write a tag
handler as it is to write a JSP. Traditionally, writing tag handlers has been a
tedious task, with a lot of time spent compiling and packaging the tag handlers

Packaging Tag Files 1-173

JavaServer Pages 2.1 Specification

and writing a TLD to provide information to tools and page authors about the
custom actions. The rules for packaging tag files are designed to make it very
simple and fast to write simple tags, while still providing as much power and
flexibility as classic tag handlers have.

JSP.8.4.1 Location of Tag Files

Tag extensions written in JSP using tag files can be placed in one of two
locations. The first possibility is in the /META-INF/tags/ directory (or a
subdirectory of /META-INF/tags/) in a JAR file installed in the /WEB-INF/lib/

directory of the web application. Tags placed here are typically part of a reusable
library of tags that can be easily dropped into any web application.

The second possibility is in the /WEB-INF/tags/ directory (or a subdirectory of
/WEB-INF/tags/) of the web application. Tags placed here are within easy reach
and require little packaging. Only files with a .tag or .tagx extension are
recognized by the container to be tag files.

Tag files that appear in any other location are not considered tag extensions
and must be ignored by the JSP container. For example, a tag file that appears in
the root of a web application would be treated as content to be served.

JSP.8.4.2 Packaging in a JAR

To be accessible, tag files bundled in a JAR require a Tag Library Descriptor.
Tag files that appear in a JAR but are not defined in a TLD must be ignored by the
JSP container.

JSP 2.0 adds an additional TLD element to describe tags within a tag library,
namely <tag-file>. The <tag-file> element requires <name> and <path>

subelements, which define the tag name and the full path of the tag file from the
root of the JAR, respectively. In a JAR file, the <path> element must always begin
with /META-INF/tags. The values for the other subelements of <tag-file> override
the defaults specified in the tag directive. Tag files packaged in a JAR inherit the
JSP version of the TLD that references them.

Note that it is possible to combine both classic tag handlers and tag handlers
implemented using tag files in the same tag library by combining the use of <tag>

and <tag-file> elements under the <taglib> element. This means that in most
instances the client is unaware of how the tag extension was implemented. Given
that <tag> and <tag-file> share a namespace, a tag library is considered invalid and
must be rejected by the container if a <tag-file> element has a <name> subelement
with the same content as a <name> subelement in a <tag> element. Any attempt to
use an invalid tag library must trigger a translation error.

TAG FILES1-174

JavaServer Pages 2.1 Specification

JSP.8.4.3 Packaging Directly in a Web Application

Tag files placed in the /WEB-INF/tags/ directory of the web application, or a
subdirectory, are made easily accessible to JSPs without the need to explicitly
write a Tag Library Descriptor. This makes it convenient for page authors to
quickly abstract reusable JSP code by simply creating a new file and placing the
code inside of it.

The JSP container must interpret the /WEB-INF/tags/ directory and each
subdirectory under it, as another implicitly defined tag library containing tag
handlers defined by the tag files that appear in that directory. There are no special
relationships between subdirectories - they are allowed simply for organizational
purposes. For example, the following web application contains three tag libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tagx
/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The JSP container must generate an implicit tag library for each directory
under and including /WEB-INF/tags/. This tag library can be imported only via the
tagdir attribute of the taglib directive (see Section JSP.1.10.2, “The taglib
Directive”), and has the following hard-wired values:

• <tlib-version> for the tag library defaults to 1.0

• <short-name> is derived from the directory name. If the directory is /WEB-

INF/tags/, the short name is simply tags. Otherwise, the full directory path
(relative to the web application) is taken, minus the /WEB-INF/tags/ prefix.
Then, all / characters are replaced with -, which yields the short name. Note
that short names are not guaranteed to be unique (as in /WEB-INF/tags/ versus
/WEB-INF/tags/tags/ or /WEB-INF/tags/a-b/ versus /WEB-INF/tags/a/b/)

• A <tag-file> element is considered to exist for each tag file in this directory,
with the following sub-elements:

■ The <name> for each is the filename of the tag file, without the .tag or .tagx
extension.

■ The <path> for each is the path of the tag file, relative to the root of the web
application.

Packaging Tag Files 1-175

JavaServer Pages 2.1 Specification

For the above example, the implicit Tag Library Descriptor for the /WEB-INF/

tags/bar/baz/ directory would be:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>

<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>

</tag-file>
</taglib>

The JSP version of an implicit tag library defaults to 2.0.
The JSP version and tlib-version of an implicit tag library may be configured

by placing a TLD with the reserved name implicit.tld in the same directory as the
implicit tag library’s constituent tag files. A JSP 2.1 container must consider only
the JSP version and tlib-version specified by an implicit.tld file, and ignore its
short-name element. Any additional elements in an implicit.tld file must cause a
translation error. The JSP version specified in an implicit.tld file must be equal to
or greater than 2.0, or else a translation error must be reported.

Upon deployment, the JSP container must search for and process all tag files
appearing in these directories and subdirectories. In processing a tag file, the
container makes the custom actions defined in these tags available to JSP files.

If a directory contains two files with the same tag name (e.g. a.tag and a.tagx),
it is considered to be the same as having a TLD file with two <tag> elements
whose <name> sub-elements are identical. The tag library is therefore considered
invalid.

Despite the existence of an implicit tag library, a Tag Library Descriptor in the
web application can still create additional tags from the same tag files. This is
accomplished by adding a <tag-file> element with a <path> that points to the tag
file. In this case, the value of <path> must start with /WEB-INF/tags. It a tag file is
referenced by both a TLD as well as an implicit TLD, the JSP versions of the TLD
and implicit TLD do not need to match.

JSP.8.4.4 Packaging as Precompiled Tag Handlers

Tag files can also be compiled into Java classes and bundled as a tag library.
This is useful for the situation where a tag library developer wishes to distribute a
binary version of the tag library without the original source. Tag library
developers that choose this form of packaging must use a tool that produces

TAG FILES1-176

JavaServer Pages 2.1 Specification

portable JSP code that uses only standard APIs. Containers are not required to
provide such a tool.

JSP.8.5 Tag File Directives

This section describes the directives available within tag files, which define
Simple Tag Handlers. Table JSP.8-1 outlines which directives are available in tag
files:

JSP.8.5.1 The tag Directive

The tag directive is similar to the page directive, but applies to tag files instead
of JSPs. Like the page directive, a translation unit can contain more than one
instance of the tag directive, all the attributes will apply to the complete translation
unit (i.e. tag directives are position independent). There shall be only one occur-
rence of any attribute/value defined by this directive in a given translation unit,
unless the values for the duplicate attributes are identical for all occurrences. The

Table JSP.8-1 Directives available to tag files

Directive Available? Interpretation/Restrictions

page no A tag file is not a page. The tag directive must
be used instead. If this directive is used in a
tag file, a translation error must result.

taglib yes Identical to JSP pages.

include yes Identical to JSP pages. Note that if the
included file contains syntax unsuitable for tag
files, a translation error must occur.

tag yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

attribute yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

variable yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

Tag File Directives 1-177

JavaServer Pages 2.1 Specification

import and pageEncoding attributes are exempt from this rule and can appear multi-
ple times. Multiple uses of the import attribute are cumulative (with ordered set
union semantics). Other such multiple attribute/value (re)definitions result in a
fatal translation error if the values do not match.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

<%@ tag display-name=”Addition”
body-content=”scriptless”
dynamic-attributes=”dyn”
small-icon=”/WEB-INF/sample-small.jpg”
large-icon=”/WEB-INF/sample-large.jpg”
description=”Sample usage of tag directive” %>

Syntax

<%@ tag tag_directive_attr_list %>

tag_directive_attr_list ::=
{ display-name=”display-name” }
{ body-content=”scriptless|tagdependent|empty” }
{ dynamic-attributes=”name” }
{ small-icon=”small-icon” }
{ large-icon=”large-icon” }
{ description=”description” }
{ example=”example” }
{ language=”scriptingLanguage” }
{ import=”importList” }
{ pageEncoding=”peinfo” }
{ isELIgnored=”true|false” }
{ deferredSyntaxAllowedAsLiteral=”true|false”}
{ trimDirectiveWhitespaces=”true|false”}

The details of the attributes are as follows:

Table JSP.8-2 Details of tag directive attributes

display-name (optional) A short name that is intended to be displayed by
tools. Defaults to the name of the tag file, without the .tag
extension.

TAG FILES1-178

JavaServer Pages 2.1 Specification

body-content (optional) Provides information on the content of the body of
this tag. Can be either empty, tagdependent, or scriptless. A
translation error will result if JSP or any other value is used.
Defaults to scriptless.

dynamic-attributes (optional) The presence of this attribute indicates this tag
supports additional attributes with dynamic names. If
present, the generated tag handler must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface, and the
container must treat the tag as if its corresponding TLD entry
contained <dynamic-attributes>true</dynamic-attributes>.
The implementation must not reject any attribute names. The
value identifies a page scoped attribute in which to place a
Map containing the names and values of the dynamic
attributes passed during this invocation. The Map must
contain each dynamic attribute name as the key and the
dynamic attribute value as the corresponding value. Only
dynamic attributes with no uri are to be present in the Map;
all other dynamic attributes are ignored. A translation error
will result if there is a tag directive with a dynamic-attributes
attribute equal to the value of a name-given attribute of a vari-
able directive or equal to the value of a name attribute of an
attribute directive in this translation unit.

small-icon (optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing a small icon
that can be used by tools. Defaults to no small icon.

large-icon (optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing a large icon
that can be used by tools. Defaults to no large icon.

description (optional) Defines an arbitrary string that describes this tag.
Defaults to no description.

example (optional) Defines an arbitrary string that presents an
informal description of an example of a use of this action.
Defaults to no example.

language (optional) Carries the same syntax and semantics of the
language attribute of the page directive.

Table JSP.8-2 Details of tag directive attributes

Tag File Directives 1-179

JavaServer Pages 2.1 Specification

JSP.8.5.2 The attribute Directive

The attribute directive is analogous to the <attribute> element in the Tag Library
Descriptor, and allows for the declaration of custom action attributes.

Examples

<%@ attribute name=”x” required=”true” fragment=”false”
rtexprvalue=”false” type=”java.lang.Integer”
description=”The first operand” %>

<%@ attribute name=”y” type=”java.lang.Integer” %>

<%@ attribute name=”prompt” fragment=”true” %>

import (optional) Carries the same syntax and semantics of the
import attribute of the page directive.

pageEncoding (optional) Carries the same syntax and semantics of the pag-
eEncoding attribute in the page directive. However, there is
no corresponding global configuration element in web.xml.
The pageEncoding attribute cannot be used in tag files in
XML syntax.

isELIgnored (optional) Carries the same syntax and semantics of the isE-
LIgnored attribute of the page directive. However, there is no
corresponding global configuration element in web.xml.

deferredSyntaxAl-
lowedAsLiteral

(optional) Carries the same syntax and semantics of the
deferredSyntaxAllowedAsLiteral attribute of the page
directive. However, there is no corresponding global
configuration element in web.xml. Causes a translation error
if specified in a tag file with a JSP version less than 2.1.

trimDirective-
Whitespaces

(optional) Carries the same syntax and semantics of the trim-
DirectiveWhitespaces attribute of the page directive.
However, there is no corresponding global configuration
element in web.xml.

Table JSP.8-2 Details of tag directive attributes

TAG FILES1-180

JavaServer Pages 2.1 Specification

Syntax

<%@ attribute attribute_directive_attr_list %>

attribute_directive_attr_list ::=
name=”attribute-name”
{ required=”true|false” }
{ fragment=”true|false” }
{ rtexprvalue=”true|false” }
{ type=”type” }
{ description=”description” }
{ deferredValue=”true|false” }
{ deferredValueType=”type” }
{ deferredMethod=”true|false” }
{ deferredMethodSignature=”signature” }

The details of the attributes are as follows:

Table JSP.8-3 Details of attribute directive attributes

name (required) The unique name of the attribute being declared.
A translation error must result if more than one attribute
directive appears in the same translation unit with the same
name. A translation error will result if there is an attribute
directive with a name attribute equal to the value of the
name-given attribute of a variable directive or the dynamic-
attributes attribute of a tag directive in this translation unit.

required (optional) Whether this attribute is required (true) or optional
(false). Defaults to false if not specified.

fragment (optional) Whether this attribute is a fragment to be
evaluated by the tag handler (true) or a normal attribute to be
evaluated by the container prior to being passed to the tag
handler. If this attribute is true, the type attribute is fixed at
javax.servlet.jsp.tagext.JspFragment and a translation error
will result if the type attribute is specified. Also, if this
attribute is true, the rtexprvalue attribute is fixed at true and a
translation error will result if the rtexprvalue attribute is
specified. Defaults to false.

rtexprvalue (optional) Whether the attribute’s value may be dynamically
calculated at runtime by a scriptlet expression. Unlike the
corresponding TLD element, this attribute defaults to true.

Tag File Directives 1-181

JavaServer Pages 2.1 Specification

JSP.8.5.3 The variable Directive

The variable directive is analogous to the <variable> element in the Tag Library
descriptor, and defines the details of a variable exposed by the tag handler to the
calling page.

type (optional) The runtime type of the attribute’s value. Defaults
to java.lang.String if not specified. It is a translation error to
specify a primitive type.

description (optional) Description of the attribute. Defaults to no
description.

deferredValue (optional) Whether the attribute's value represents a deferred
value expression. Only one of deferredValue or deferred-
Method may be true. If deferredValueType is specified,
default is true, otherwise default is false. Causes a translation
error if specified in a tag file with a JSP version less than 2.1.

deferredValue-
Type

(optional) The expected type resulting from the evaluation of
the attribute's value expression. Defaults to java.lang.String if
not specified. If both deferredValueType and deferredValue
are specified, deferredValue must be true. If deferredValue is
true, default is java.lang.Object. Causes a translation error if
specified in a tag file with a JSP version less than 2.1.

deferredMethod (optional) Whether the attribute's value represents a deferred
method expression. Only one of deferredValue or deferred-
Method may be true. If deferredMethodSignature is specified,
default is true, otherwise default is false. Causes a translation
error if specified in a tag file with a JSP version less than 2.1.

deferredMethod-
Signature

(optional) The signature, as defined in the Java Language
Specification, of the method to be invoked in the attribute's
method expression. If both deferredMethod and deferred-
MethodSignature are specified, deferredMethod must be true.
If deferredMethod is true and deferredMethodSignature is not
specified, it defaults to void methodname(). Causes a
translation error if specified in a tag file with a JSP version
less than 2.1.

Table JSP.8-3 Details of attribute directive attributes

TAG FILES1-182

JavaServer Pages 2.1 Specification

See Section JSP.7.1.4.7, “Actions Defining Scripting Variables” for more
details.

Examples

<%@ variable name-given=”sum”
variable-class=”java.lang.Integer”
scope=”NESTED”
declare=”true”
description=”The sum of the two operands” %>

<%@ variable name-given=”op1”
variable-class=”java.lang.Integer”
description=”The first operand” %>

<%@ variable name-from-attribute=”var” alias=”result” %>

Syntax

<%@ variable variable_directive_attr_list %>

variable_directive_attr_list ::=
(name-given=”output-name”

| (name-from-attribute=”attr-name”
alias=”local-name”

)
)
{ variable-class=”output-type” }
{ declare=”true|false” }
{ scope=”AT_BEGIN|AT_END|NESTED” }
{ description=”description” }

Tag File Directives 1-183

JavaServer Pages 2.1 Specification

The details of the attributes are as follows:

Table JSP.8-4 Details of variable directive attributes

name-given Defines a scripting variable to be defined in the page
invoking this tag. Either the name-given attribute or the
name-from-attribute attribute must be specified. Specifying
neither or both will result in a translation error. A
translation error will result if two variable directives have
the same name-given. A translation error will result if there
is a variable directive with a name-given attribute equal to
the value of the name attribute of an attribute directive or
the dynamic-attributes attribute of a tag directive in this
translation unit.

name-from-attribute Defines a scripting variable to be defined in the page
invoking this tag. The specified name is the name of an
attribute whose (translation-time) value at of the start of the
tag invocation will give the name of the variable. A
translation error will result if there is no attribute directive
with a name attribute equal to the value of this attribute that
is of type java.lang.String, is required and not an rtex-
prvalue. Either the name-given attribute or the name-from-
attribute attribute must be specified. Specifying neither or
both will result in a translation error. A translation error
will result if two variable directives have the same name-
from-attribute.

alias Defines a locally scoped attribute to hold the value of this
variable. The container will synchronize this value with the
variable whose name is given in name-from-attribute.
Required when name-from-attribute is specified. A
translation error must occur if used without name-from-
attribute. A translation error must occur if the value of alias
is the same as the value of a name attribute of an attribute
directive or the name-given attribute of a variable directive
in the same translation unit.

variable-class (optional) The name of the class of the variable. The
default is java.lang.String.

declare (optional) Whether the variable is declared or not in the
calling page/tag file, after this tag invocation. true is the
default.

TAG FILES1-184

JavaServer Pages 2.1 Specification

JSP.8.6 Tag Files in XML Syntax

Tag files can be authored using the XML syntax, as described in Chapter JSP.6,
“JSP Documents”. This section describes the few distinctions from the case of JSP
documents.

Tag files in XML syntax must have the extension .tagx. All files with
extension .tagx according to the rules in Section JSP.8.4.1 are tag files in XML
syntax. Conversely, files with extension .tag are not in XML syntax.

The jsp:root element can, but needs not, appear in tag files in XML syntax. A
jsp:root element cannot appear in a tag file in JSP syntax.

As indicated in Section JSP.5.16, “<jsp:output>”, the default for tag files, in
either syntax, is not to generate the xml declaration. The element jsp:output can be
used to change that default for tag files in XML syntax.

Finally, the tag directive in a tag file in XML syntax cannot include a pageEn-

coding attribute; the encoding is inferred using the conventions for XML
documents. Using the pageEncoding attribute shall result in a translation-time
error.

JSP.8.7 XML View of a Tag File

Similar to JSP pages, tag files have an equivalent XML document, the XML
view of a tag file, that is exposed to the translation phase for validation. During the
translation phase for a tag file, a tag XML view is created and passed to all TLVs
declared in all tag libraries declared in the tag file.

The XML view of a tag file is identical to the XML view of a JSP, except that
there are additional XML elements defined to handle tag file specific features. The
XML view of a tag file is obtained in the same way that the XML view of a JSP
page is obtained (see Chapter JSP.10, “XML View”).

scope (optional) The scope of the scripting variable defined. Can
be either AT_BEGIN, AT_END, or NESTED. Defaults to
NESTED.

description (optional) An optional description of this variable. Defaults
to no description.

Table JSP.8-4 Details of variable directive attributes

Implicit Objects 1-185

JavaServer Pages 2.1 Specification

JSP.8.8 Implicit Objects

Tag library developers writing tag files have access to certain implicit objects
that are always available for use within scriptlets and expressions through
scripting variables that are declared implicitly at the beginning of the tag handler
implementation. All scripting languages are required to provide access to these
objects.

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet API package, as shown in Table JSP.8-5.

Table JSP.8-5 Implicit Objects Available in Tag Files

Variable
Name Type Semantics & Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.http.HttpServletRequest

The request triggering
the service invocation.
request scope.

response protocol dependent subtype of:
javax.servlet.ServletResponse, e.g:
javax.servlet.http.HttpServletResponse

The response to the
request.
page scope.

jspContext javax.servlet.jsp.JspContext The JspContext for this
tag file.
page scope.

session javax.servlet.http.HttpSession The session object
created for the requesting
client (if any).
This variable is only
valid for HTTP
protocols.
session scope

application javax.servlet.ServletContext The servlet context
obtained from the servlet
configuration object
(as in the call getServlet-
Config().
getContext())
application scope

TAG FILES1-186

JavaServer Pages 2.1 Specification

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

JSP.8.9 Variable Synchronization

Just as is the case for all tag handlers, a tag file is able to communicate with its
calling page via variables. As mentioned earlier, in tag files, variables are declared
using the variable directive. Though the scopes of variables are similar to those in
classic tag handlers, the semantics are slightly different. The intent is to be able to
emulate IN and OUT parameters using attributes and variables, which appear as
page-scoped attributes local to the tag file, and are synchronized with the calling
page’s JspContext at various points.

The name-from-attribute and alias attributes of the variable directive can be
used to allow the caller to customize the name of the variable in the calling page
while referring to a constant name in the tag file. When using these attributes, the
name of the variable in the calling page is derived from the value of name-from-

attribute at the time the tag was called. The name of the corresponding variable in
the tag file is the value of alias.

• IN parameters - Use attributes. For each attribute, a page-scoped attribute is
made available in the JspContext of the tag file. The page-scoped attribute is
initialized to the value of the attribute when the tag is called. No further syn-
chronization is performed.

• OUT parameters - Use variables with scope AT_BEGIN or AT_END. For each
AT_BEGIN or AT_END variable, a page-scoped attribute is made available in
the JspContext of the tag file. The scoped attribute is not initialized. Synchro-
nization is performed at the end of the tag for AT_BEGIN and AT_END and

out javax.servlet.jsp.JspWriter An object that writes into
the output stream.
page scope

config javax.servlet.ServletConfig The ServletConfig for
this JSP page
page scope

Table JSP.8-5 Implicit Objects Available in Tag Files

Variable
Name Type Semantics & Scope

Variable Synchronization 1-187

JavaServer Pages 2.1 Specification

also before the invocation of a fragment for AT_BEGIN. See Table JSP.8-6 for
details.

• Nested parameters - Use variables with scope AT_BEGIN or NESTED. For
each AT_BEGIN or NESTED variable, a page-scoped attribute is made avail-
able in the JspContext of the tag file. The scoped attribute is not initialized.
Synchronization is performed before each fragment invocation for AT_BEGIN

and NESTED, and also after the end of the tag for AT_BEGIN. See Table JSP.8-
6 for details.

JSP.8.9.1 Synchronization Points

The JSP container is required to generate code to handle the synchronization
of each declared variable. The details of how and when each variable is
synchronized varies by the variable’s scope, as per Table JSP.8-6.

The following list describes what each synchronization action means. If
name-given is used, the name of the variable in the calling page (referred to as P)
and the name of the variable in the tag file (referred to as T) are the same and are
equal to the value of name-given. If name-from-attribute is used, the name of P is
equal to the value of the attribute (at the time the page was called) specified by the
value of name-from-attribute and the name of T is equal to the value of the alias

attribute.

• - For this variable, if T exists in the tag file, create/update P in
the calling page. If a T does not exist in the tag file, and P does exist in the call-
ing page, P is removed from the calling page’s page scope. If the declare at-
tribute for this variable is set to true, a corresponding scripting variable is
declared in the calling page or tag file, as with any other tag handler. If this
scripting variable would not be accessible in the context in which it is defined,

Table JSP.8-6 Variable synchronization behavior

AT_BEGIN NESTED AT_END

Beginning of tag file do nothing save do nothing

Before any fragment do nothing

After any fragment do nothing do nothing do nothing

End of tag file restore

tag page→ tag page→

tag page→ tag page→

tag page→

TAG FILES1-188

JavaServer Pages 2.1 Specification

the container need not declare the scripting variable (for example in a scriptless
body).

• save - For this variable, save the value of P, for later restoration. If P did not
exist, remember that fact.

• restore - For this variable, restore the value of P in the calling page, from the
value saved earlier. If P did not exist before, ensure it does not exist now.

All variable synchronization and restoration that occurs at the end of a tag file
must occur regardless of whether an exception is thrown inside the tag file. All
variable synchronization that occurs after the invocation of a fragment must occur
regardless of whether an exception occured while invoking the fragment.

JSP.8.9.2 Synchronization Examples

The following examples help illustrate how variable synchronization works
between a tag file and its calling page.

JSP.8.9.2.1 Example of AT_BEGIN

In this example, the AT_BEGIN scope is used to pass a variable to the tag’s body,
and make it available to the calling page at the end of the tag invocation.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 4) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”AT_BEGIN” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

Variable Synchronization 1-189

JavaServer Pages 2.1 Specification

JSP.8.9.2.2 Example of AT_BEGIN and name-from-attribute

Like the previous example, in this example the AT_BEGIN scope is used to pass
a variable to the tag’s body, and make it available to the calling page at the end of the
tag invocation. The name of the attribute is customized via name-from-attribute.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example var=”x”>

${x} <%-- (x == 2) --%>
${result} <%-- (result == null) --%>
<c:set var=”x” value=”3”/>
<c:set var=”result” value=”invisible”/>

</my:example>
${x} <%-- (x == 4) --%>
${result} <%-- (result == ‘invisible’) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ attribute name=”var” required=”true” rtexprvalue=”false”%>
<%@ variable alias=”result” name-from-attribute=”var” scope=”AT_BEGIN” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
${result} <%-- (result == null) --%>
<c:set var=”x” value=”ignored”/>
<c:set var=”result” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == ‘ignored’) --%>
${result} <%-- (result == 2) --%>
<c:set var=”x” value=”still_ignored”/>
<c:set var=”result” value=”4”/>

JSP.8.9.2.3 Example of NESTED

In this example, the NESTED scope is used to make a private variable available
to the calling page. The original value is restored when the tag is done.

TAG FILES1-190

JavaServer Pages 2.1 Specification

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 1) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”NESTED” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

JSP.8.9.2.4 Example of AT_END

In this example, the AT_END scope is used to return a value to the page. The
body of the tag is not affected.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 1) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 4) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”AT_END” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

Variable Synchronization 1-191

JavaServer Pages 2.1 Specification

JSP.8.9.2.5 Example of Removing Parameters

This example illustrates how the tag file can remove objects from the page
scope of the calling page during synchronization.

<%-- page.jsp --%>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”x” value=”2”/>
${x}
<my:tag1>

‘${x}’
</my:tag1>
${x}

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”NESTED” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”x” value=”1”/>
<jsp:doBody/>
<c:remove var=”x”/>
<jsp:doBody/>

The expected output of this example is: 2 ‘1’ ‘’ 2

TAG FILES1-192

JavaServer Pages 2.1 Specification

1-193JavaServer Pages 2.1 Specification

C H A P T E R JSP.9
Scripting

This chapter describes the details of the Scripting Elements when the lan-
guage directive value is java.

The scripting language is based on the Java programming language (as
specified by “The Java Language Specification”), but note that there is no valid
JSP page, or a subset of a page, that is a valid Java program.

The following sections describe the details of the relationship between the
scripting declarations, scriptlets, and scripting expressions, and the Java
programming language. The description is in terms of the structure of the JSP
page implementation class. A JSP Container need not generate the JSP page
implementation class, but it must behave as if one exists.

JSP.9.1 Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting
language used in the page. This is especially complex since scriptlets are language
fragments, not complete language statements.

JSP.9.1.1 Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementa-
tion class defined by Table JSP.9-1 (after applying all include directives), together
with any other classes defined by the JSP container, is a valid program for the given
Java Platform, and if it passes the validation methods for all the tag libraries associ-
ated with the JSP page.

SCRIPTING1-194

JavaServer Pages 2.1 Specification

JSP.9.1.2 Reserved Names

Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in
any combination of upper and lower case, for the JSP specification. Names of this
form that are not defined in this specification are reserved by Sun for future
expansion.

JSP.9.1.3 Implementation Flexibility

The transformations described in this chapter need not be performed literally.
An implementation may implement things differently to provide better perfor-
mance, lower memory footprint, or other implementation attributes.

Table JSP.9-1 Structure of the JavaProgramming Language Class

Optional imports
clause as indicated
via jsp directive

import name1

SuperClass is either
selected by the JSP
container or by the
JSP author via the jsp
directive.
Name of class
(_jspXXX) is
implementation
dependent.

class _jspXXX extends SuperClass

Start of the body of a
JSP page
implementation class

{

(1) Declaration
Section

// declarations...

signature for
generated method

public void _jspService(<ServletRequestSubtype> request,
<ServletResponseSubtype> response)

throws ServletException, IOException {

(2) Implicit Objects
Section

// code that defines and initializes request, response, page,
pageContext etc.

Declarations Section 1-195

JavaServer Pages 2.1 Specification

JSP.9.2 Declarations Section

The declarations section corresponds to the declaration elements.
The contents of this section is determined by concatenating all the

declarations in the page in the order in which they appear.

JSP.9.3 Initialization Section

This section defines and initializes the implicit objects available to the JSP page.
See Section JSP.1.8.3, “Implicit Objects”.

JSP.9.4 Main Section

This section provides the main mapping between a request and a response
object.

The content of code segment 2 is determined from scriptlets, expressions, and
the text body of the JSP page. The elements are processed sequentially in the
order in which they appear in the page. The translation for each one is determined
as indicated below, and its translation is inserted into this section. The translation
depends on the element type:

JSP.9.4.1 Template Data

Template data is transformed into code that will place the template data into the
stream named by the implicit variable out when the code is executed. White space is
preserved.

(3) Main Section // code that defines request/response mapping

close of _jspService
method

}

close of _jspXXX }

Table JSP.9-1 Structure of the JavaProgramming Language Class

SCRIPTING1-196

JavaServer Pages 2.1 Specification

Ignoring quotation issues and performance issues, this corresponds to a
statement of the form:

JSP.9.4.2 Scriptlets

A scriptlet is transformed into its code fragment.:

JSP.9.4.3 Expressions

An expression is transformed into a Java statement to insert the value of the
expression, converted to java.lang.String if needed, into the stream named by the
implicit variable out. No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of
the form:

JSP.9.4.4 Actions

An action defining one or more objects is transformed into one or more variable
declarations for those objects, together with code that initializes the variables. Their
visibility is affected by other constructs, for example scriptlets.

The semantics of the action type determines the names of the variables
(usually the name of an id attribute, if present) and their type. The only standard
action in the JSP specification that defines objects is the jsp:useBean action. The
name of the variable introduced is the name of the id attribute and its type is the
type of the class attribute.

Original Equivalent Text
template out.print(template)

Original Equivalent Text
<% fragment %> fragment

Original Equivalent Text
<%= expression %> out.print(expression)

Original Equivalent Text
<x:tag>

foo
</x:tag>

declare AT_BEGIN variables
{

declare NESTED variables
transformation of foo

}
declare AT_END variables

Main Section 1-197

JavaServer Pages 2.1 Specification

Note that the value of the scope attribute does not affect the visibility of the
variables within the generated program. It affects where and thus for how long
there will be additional references to the object denoted by the variable.

SCRIPTING1-198

JavaServer Pages 2.1 Specification

1-199JavaServer Pages 2.1 Specification

C H A P T E R JSP.10
XML View

This chapter provides details on the XML view of a JSP page and tag files.
The XML views are used to enable validation of JSP pages and tag files..

JSP.10.1 XML View of a JSP Document, JSP Page or Tag File

This section describes the XML view of a JSP page or tag file: the mapping
between a JSP page, JSP document or tag file, and an XML document describing it.

JSP.10.1.1 JSP Documents and Tag Files in XML Syntax

The XML view of a JSP document or of a tag file written in XML syntax is
very close to the original JSP page. Only five transformations are performed:

• Expand all include directives into the JSP content they include. See
Section JSP.1.10.5, “Including Data in JSP Pages” for the semantics of mixing
XML and standard syntax content.

• Add a jsp:root element as the root element if the JSP document or tag file in
XML syntax does not have it.

• Set the value of the pageEncoding attribute of the page directive to "UTF-8".
The page directive and the pageEncoding attribute are added if they don’t ex-
ist already.

• Set the value of the contentType attribute of the page directive to the value
that the container will pass to ServletResponse.setContentType(), determined
as described in Section JSP.4.2, “Response Character Encoding”. The page

directive and the contentType attribute are added if they don’t exist already.

• Add the jsp:id attribute (see Section JSP.10.1.13).

XML VIEW1-200

JavaServer Pages 2.1 Specification

JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax

The XML view of a JSP page or tag file written in standard syntax is defined
by the following transformation:

• Expand all include directives into the JSP content they include. See
Section JSP.1.10.5, “Including Data in JSP Pages” for the semantics of mixing
XML and standard syntax content.

• Add a jsp:root element as the root, with appropriate xmlns:jsp attribute, and
convert the taglib directive into xmlns: attributes of the jsp:root element.

• Convert declarations, scriptlets, and expressions into valid XML elements as
described in Section JSP.6.3.2, “The jsp:root Element” and the following sec-
tions.

• Convert request-time attribute expressions as in Section JSP.10.1.11.

• Convert JSP quotations to XML quotations.

• Create jsp:text elements for all template text.

• Add the jsp:id attribute (see Section JSP.10.1.13).

Note that the XML view of a JSP page or tag file has no DOCTYPE

information; see Section JSP.10.2.
A quick overview of the transformation is shown in Table JSP.10-1:

Table JSP.10-1 XML View Transformations

JSP element XML view

<%-- comment --%> removed

<%@ page ... %> <jsp:directive.page ... />. Add jsp:id

<%@ taglib ... %> jsp:root element is annotated with namespace
information. Add jsp:id.

<%@ include ... %> expanded in place

<%! ... %> <jsp:declaration> ... </jsp:declaration>. Add jsp:id.

<% ... %> <jsp:scriptlet> ... </jsp:scriptlet>. Add jsp:id.

<%= ... %> <jsp:expression> ... </jsp:expression>. Add jsp:id.

Standard action Replace with XML syntax (adjust request-time
expressions; add jsp:id)

XML View of a JSP Document, JSP Page or Tag File 1-201

JavaServer Pages 2.1 Specification

In more detail:

JSP.10.1.3 JSP Comments

JSP comments (of the form <%-- comment --%>) are not passed through to the
XML view of a JSP page.

JSP.10.1.4 The page Directive

A page directive of the form:

<%@ page { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.page { attr=”value” }* />

The value of the pageEncoding attribute is set to "UTF-8". The value of the
contentType attribute is set to the value that the container will pass to
ServletResponse.setContentType(), determined as described in Section JSP.4.2,
“Response Character Encoding”. The page directive and both attributes are added
if they don’t exist already.

JSP.10.1.5 The taglib Directive

A taglib directive of the form

<%@ taglib uri=”uriValue” prefix=”prefix” %>

Custom action As is (adjust request-time expressions; add jsp:id)

template Replace with jsp:text. Add jsp:id.

<%@ tag ... %> <jsp:directive.tag ... />. Add jsp:id. [tag files only]

<%@ attribute ... %> <jsp:directive.attribute ... />. Add jsp:id. [tag files only]

<%@ variable ... %> <jsp:directive.variable ... />. Add jsp:id. [tag files only]

Table JSP.10-1 XML View Transformations

JSP element XML view

XML VIEW1-202

JavaServer Pages 2.1 Specification

is translated into an xmlns:prefix attribute on the root of the JSP document, with
a value that depends on uriValue. If uriValue is a relative path, then the value used is
urn:jsptld:uriValue; otherwise, the uriValue is used directly.

A taglib directive of the form

<%@ taglib tagdir=”tagDirValue” prefix=”prefix” %>

is translated into an xmlns:prefix attribute on the root of the JSP document, with
a value of the form urn:jsptagdir:tagDirValue.

JSP.10.1.6 The include Directive

An include directive of the form

<%@ include file=”value” %>

is expanded into the JSP content indicated by value. This is done to allow for
validation of the page.

JSP.10.1.7 Declarations

Declarations are translated into a jsp:declaration element. For example, the sec-
ond example from Section JSP.1.12.1, “Declarations”:

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

is translated into the following.

<jsp:declaration> <![CDATA[public String f(int i) { if (i<3) return(“...”); }]]> </
jsp:declaration>

Alternatively, we could use an < and instead say:

<jsp:declaration> public String f(int i) { if (i<3) return(“...”); } </jsp:declaration>

JSP.10.1.8 Scriptlets

Scriptlets are translated into a jsp:scriptlet element. In the XML document cor-
responding to JSP pages, directives are represented using the syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

XML View of a JSP Document, JSP Page or Tag File 1-203

JavaServer Pages 2.1 Specification

JSP.10.1.9 Expressions

In the XML document corresponding to JSP pages, directives are represented
using the jsp:expression element:

<jsp:expression> expression goes here </jsp:expression>

JSP.10.1.10 Standard and Custom Actions

The syntax for both standard and action elements is based on XML. The trans-
formations needed are due to quoting conventions and the syntax of request-time
attribute expressions.

JSP.10.1.11 Request-Time Attribute Expressions

Request-time attribute expressions are of the form <%= expression %>.
Although this syntax is consistent with the syntax used elsewhere in a JSP page, it is
not a legal XML syntax. The XML mapping for these expressions is into values of
the form %= expression %, where the JSP specification quoting convention has
been converted to the XML quoting convention.

Request-time attribute values can also be specified using EL expressions of
the form ${expression}. Expressions of this form are represented verbatim in the
XML view.

The XML view of an escaped EL expression using the ${expr} syntax can be
obtained as follows:

• The XML view of an unescaped expression ${foo} is ${foo}.

• The XML view of an escaped expression \${foo} is \${foo}.

• For each escaped \ preceeding an unescaped expression ${foo}, a ${’\\’} must be
generated in the XML view, and neighboring generated ${’\\’} expressions must
be combined.

Table JSP.10-2 illustrates these rules. Assume the EL expression ${foo}

evaluates to [bar] and that EL is enabled for this translation unit.

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result

${foo} ${foo} [bar]

XML VIEW1-204

JavaServer Pages 2.1 Specification

The XML view of an escaped EL expression using the #{expr} syntax follows
the same rules as the ${expr} syntax, where ${ is simply substituted with #{.

JSP.10.1.12 Template Text and XML Elements

All text that is uninterpreted by the JSP translator is converted into the body for
a jsp:text element. As a consequence no XML elements of the form described in
Section JSP.6.3.9, “Template Content” will appear in the XML view of a JSP page
written in JSP syntax.

Because \\ is not an escape sequence within template text in the standard
syntax, no special transformation needs to be done to obtain the XML view of an
escaped EL expression that appears in template text.

Table JSP.10-3 illustrates how the XML view of an escaped EL expression is
obtained. Assume the EL expression ${foo} evaluates to [bar] and that EL is
enabled for this translation unit.The same rules apply for the #{expr} syntax,
where ${ is simply substituted with #{ .

\${foo} \${foo} ${foo}

\\${foo} ${’\\’}${foo} \[bar]

\\\${foo} \\${foo} \${foo}

\\\\${foo} ${’\\\\’}${foo} \\[bar]

\\\\\${foo} \\\${foo} \\${foo}

\\\\\\${foo} ${’\\\\\\’}${foo} \\\[bar]

...

Table JSP.10-3 XML View of an Escaped EL Expression in Template Text

Attribute Value XML View Result

${foo} ${foo} [bar]

\${foo} \${foo} ${foo}

\\${foo} \\${foo} \${foo}

\\\${foo} \\\${foo} \\${foo}

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result

XML View of a JSP Document, JSP Page or Tag File 1-205

JavaServer Pages 2.1 Specification

JSP.10.1.13 The jsp:id Attribute

A JSP container must support a jsp:id attribute. This attribute can only be
present in the XML view of a JSP page and can be used to improve the quality of
translation time error messages.

The XML view of any JSP page will have an additional jsp:id attribute added
to all XML elements. This attribute is given a value that is unique over all
elements in the XML view. The prefix for the id attribute need not be "jsp" but it
must map to the namespace http://java.sun.com/JSP/Page. In the case where the
page author has redefined the jsp prefix, an alternative prefix must be used by the
container. See Chapter JSP.13, “Tag Extension API” for more details.

JSP.10.1.14 The tag Directive

The tag directive is applicable to tag files only. A tag directive of the form:

<%@ tag { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.tag { attr=”value” }* />

The value of the pageEncoding attribute is set to "UTF-8". A tag directive and
the pageEncoding attribute are added if they don’t exist already.

JSP.10.1.15 The attribute Directive

The attribute directive is applicable to tag files only. An attribute directive of the
form:

<%@ attribute { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.attribute { attr=”value” }* />

...

Table JSP.10-3 XML View of an Escaped EL Expression in Template Text

Attribute Value XML View Result

XML VIEW1-206

JavaServer Pages 2.1 Specification

JSP.10.1.16 The variable Directive

The variable directive is applicable to tag files only. A variable directive of the
form:

<%@ variable { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.variable { attr=”value” }* />

JSP.10.2 Validating an XML View of a JSP page

The XML view of a JSP page is a namespace-aware document and it cannot be
validated against a DTD except in the most simple cases. To reduce confusion and
possible unintended performance consequences, the XML view of a JSP page will
not include a DOCTYPE.

There are several mechanisms that are aware of namespaces that can be used
to do validation of XML views of JSP pages. The most popular mechanism is the
W3C XML Schema language, but others are also suited, including some very
simple ones that may check, for example, that only some elements are being used,
or, inversely, that they are not used. The TagLibraryValidator for a tag library
permits encapsulating this knowledge with a tag library.

The TagLibraryValidator acts on the XML view of the JSP page. If the page
was authored in JSP syntax, that view does not provide any detail on template data
(all being grouped inside jsp:text elements), but fine detail can be described when
using JSP documents1.

JSP.10.3 Examples

This section presents various examples of XML Views. The first shows a JSP
page in XML syntax that includes XML fragments. The second shows a JSP page in
JSP syntax and its mapping to XML syntax. The three following examples illustrate
the semantics of cross-syntax translation-time includes and the effect on the XML
View.

1. Similarly, when applying an XSLT transformation to a JSP document,
XML fragments will be plainly visible, while the content of jsp:text ele-
ments will not

Examples 1-207

JavaServer Pages 2.1 Specification

JSP.10.3.1 A JSP document

This is an example of a very simple JSP document that has some template XML
elements. This particular example describes a table that is a collection of 3 rows,
with numeric values 1, 2, 3. The JSP Standard Tag Library is being used:

<?xml version="1.0"?>
<table>

<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">

<row>${counter}</row>
</c:forEach>

</table>

JSP.10.3.2 A JSP page and its corresponding XML View

Here is an example of mapping between JSP and XML syntax.
For this JSP page:

<html>
<title>positiveTagLib</title>
<body>

<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">
Positive Test taglib directive </eg:test>
</body>
</html>

The XML View of the previous page is:

XML VIEW1-208

JavaServer Pages 2.1 Specification

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
 xmlns:test="urn:jsptld:/tomcat/taglib"
 xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"

<jsp:text><![CDATA[<html>
<title>positiveTagLib</title>
<body>

]]></jsp:text>
<eg:test toBrowser="true" att1="Working">
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>
<jsp:text><![CDATA[
</body>
</html>
]]></jsp:text>
</jsp:root>

JSP.10.3.3 Clearing Out Default Namespace on Include

This example illustrates the need to clear out the default namespace when doing
a translation-time include of a JSP document:

<!-- a.jspx -->
<elementA>

<tagB xmlns="http://namespace1">
<jsp:directive.include file="b.jspx" />

</tagB>
</elementA>

<!-- b.jspx -->
<elementC />

The resulting XML View for these two JSP documents is:

Examples 1-209

JavaServer Pages 2.1 Specification

<jsp:root>
<elementA>

<tagB xmlns="http://namespace1">
<elementC />

</tagB>
</elementA>

</jsp:root>

JSP.10.3.4 Taglib Direcive Adds to Global Namespace

This example illustrates the effect of the taglib directive on the XML View.
Notice how the taglib directive always affects the <jsp:root> element, independent
of where it is encountered.

<!-- c.jspx -->
<elementD>

<jsp:directive.include file="d.jsp" />
<jsp:directive.include file="e.jsp" />

</elementD>

<%-- d.jsp --%>
<%@ taglib prefix="x" uri="http://namespace2" %>
<x:tagE />

<%-- e.jsp --%>
<x:tagE />

The resulting XML View of these documents and pages is:

<jsp:root xmlns:x="http://namespace2">
<elementD>

<x:tagE />
<x:tagE />

</elementD>
</jsp:root>

JSP.10.3.5 Collective Application of Inclusion Semantics

This example illustrates how the various translation-time include semantics are
collectively applied:

XML VIEW1-210

JavaServer Pages 2.1 Specification

<%-- f.jsp --%>
<%@ taglib prefix="m" uri="http://namespace3" %>
<%@ include file="g.jspx" %>

<!-- g.jspx -->
<tagF xmlns="http://namespace4" />

<y:tagG xmlns:y="http://namespace5">
<tagH />
<jsp:directive.include file="i.jspx" />

</y:tagG>
<jsp:directive.include file="h.jsp" />
<tagI />

</tagF>

<%-- h.jsp --%>
<%@ taglib prefix="n" uri="http://namespace6" %>
<m:tagJ />
<n:tagK />

<!-- i.jspx -->
<jsp:root>

<y:tagL xmlns:y="http://namespace7">
<elementM />
<jsp:directive.include file="h.jsp" />

</y:tagL>
</jsp:root>

The resulting XML View of these documents and pages is:

Examples 1-211

JavaServer Pages 2.1 Specification

<jsp:root xmlns:m="http://namespace3"
xmlns:n="http://namespace6">

<tagF xmlns="http://namespace4">
<y:tagG xmlns:y="http://namespace5">

<tagH />
<y:tagL xmlns="" xmlns:y="http://namespace7">

<elementM />
<m:tagJ />
<n:tagK />

</y:tagL>
</y:tagG>
<m:tagJ />
<n:tagK />
<tagI />

</tagF>
</jsp:root>

XML VIEW1-212

JavaServer Pages 2.1 Specification

2-1JavaServer Pages 2.1 Specification

Part II

The next chapters provide detail specification information on some portions
of the JSP specification that are intended for JSP Container Vendors, JSP Page
authors, and JSP Tag Library authors.

The chapters are normative.
The chapters are

• JSP Container

• Core API

• Tag Extension API

• Expression Language API

2-2

JavaServer Pages 2.1 Specification

2-3JavaServer Pages 2.1 Specification

C H A P T E R JSP.11
JSP Container

This chapter describes the contracts between a JSP container and a JSP page,
including the precompilation protocol and debugging support requirements.

The information in this chapter is independent of the Scripting Language used
in the JSP page. Chapter JSP.9, “Scripting” describes information specific to when
the language attribute of the page directive has java as its value.).

JSP page implementation classes should use the JspFactory and PageContext

classes to take advantage of platform-specific implementations.

JSP.11.1 JSP Page Model

A JSP page is represented at execution time by a JSP page implementation
object and is executed by a JSP container. The JSP page implementation object is a
servlet. The JSP container delivers requests from a client to a JSP page implementa-
tion object and responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object
for a given protocol, possibly creating and/or using some other objects in the
process . A JSP page may also indicate how some events are to be handled. In JSP
2.1 only init and destroy events are allowed events.

JSP.11.1.1 Protocol Seen by the Web Server

The JSP container locates the appropriate instance of the JSP page implementa-
tion class and delivers requests to it using the servlet protocol. A JSP container may
need to create such a class dynamically from the JSP page source before delivering
request and response objects to it.

The Servlet class defines the contract between the JSP container and the JSP
page implementation class. When the HTTP protocol is used, the contract is

JSP CONTAINER2-4

JavaServer Pages 2.1 Specification

described by the HttpServlet class. Most JSP pages use the HTTP protocol, but
other protocols are allowed by this specification.

The JSP container automatically makes a number of server-side objects
available to the JSP page implementation object . See Section JSP.1.8.3, “Implicit
Objects”.

JSP.11.1.1.1 Protocol Seen by the JSP Page Author

The JSP specification defines the contract between the JSP container and the
JSP page author. This contract defines the assumptions an author can make for the
actions described in the JSP page.

The main portion of this contract is the _jspService method that is generated
automatically by the JSP container from the JSP page. The details of this contract
are provided in Chapter JSP.9, “Scripting”.

The contract also describes how a JSP author can indicate what actions will be
taken when the init and destroy methods of the page implementation occur. In JSP
2.1 this is done by defining methods with the names jspInit and jspDestroy in a
declaration scripting element in the JSP page. The jspInit method, if present, will
be called to prepare the page before the first request is delivered. Similarly a JSP
container can reclaim resources used by a JSP page when a request is not being
serviced by the JSP page by invoking its jspDestroy method, if present.

A JSP page author may not (re)define servlet methods through a declaration
scripting element.

The JSP specification reserves names for methods and variables starting with
jsp, _jsp, jspx, and _jspx, in any combination of upper and lower case.

JSP.11.1.1.2 The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page
author is aided by the requirement that the Servlet class corresponding to the JSP
page must implement the javax.servlet.jsp.HttpJspPage interface (or the javax.serv-

let.jsp.JspPage interface if the protocol is not HTTP).

JSP Page Implementation Class 2-5

JavaServer Pages 2.1 Specification

Figure JSP.11-1 Contracts between a JSP Page and a JSP Container.

The involved contracts are shown in Figure JSP.11-1. We now revisit this
whole process in more detail.

JSP.11.2 JSP Page Implementation Class

The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.
The JSP Page implementation object belongs to an implementation-dependent

named package. The package used may vary between one JSP and another, so
minimal assumptions should be made.

As of JSP 2.0, it is illegal to refer to any classes from the unnamed (a.k.a.
default) package. This may result in a translation error on some containers,
specifically those that run in a JDK 1.4 or greater environment. It is unfortunate,
but unavoidable, that this will break compatibility with some older JSP
applications. However, as of JDK 1.4, importing classes from the unnamed
package is not valid (see http://java.sun.com/j2se/1.4/compatibility.html#source
for details). Therefore, for forwards compatibility, applications must not rely on
the unnamed package. This restriction also applies for all other cases where
classes are referenced, such as when specifying the class name for a tag in a TLD.

JSP Container JSP Page

jspInit

jspDestroy

_jspService

init event

destroy event

request

response

<%!
public void jspInit()...

public void jspDestroy()...
%>
<html>
This is the response..
</html>

REQUEST PROCESSING TRANSLATION PHASE
PHASE

JSP CONTAINER2-6

JavaServer Pages 2.1 Specification

The JSP container may create the implementation class for a JSP page, or a
superclass may be provided by the JSP page author through the use of the extends

attribute in the page directive.
The extends mechanism is available for sophisticated users. It should be used

with extreme care as it restricts decisions that a JSP container can make. It may
restrict efforts to improve performance, for example.

The JSP page implementation class will implement javax.servlet.Servlet and
requests are delivered to the class as per the rules in the Servlet 2.5 specification.

A JSP page implementation class may depend on support classes. If the JSP
page implementation class is packaged into a WAR, any dependent classes will
have to be included so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server
will communicate using a certain protocol. The JSP container must guarantee that
requests to and responses from the page use that protocol. Most JSP pages use
HTTP, and their implementation classes must implement the HttpJspPage

interface, which extends JspPage. If the protocol is not HTTP, then the class will
implement an interface that extends JspPage.

JSP.11.2.1 API Contracts

The contract between the JSP container and a Java class implementing a JSP
page corresponds to the Servlet interface. Refer to the Servlet 2.5 specification for
details.

The responsibility for adhering to this contract rests on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp

directive. If the extends attribute of the jsp directive is used, the JSP page author
must guarantee that the superclass given in the extends attribute supports this
contract.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

void jspInit() Method is optionally defined in
JSP page.
Method is invoked when the JSP
page is initialized.
When method is called all the
methods in servlet, including get-
ServletConfig are available

JSP Page Implementation Class 2-7

JavaServer Pages 2.1 Specification

JSP.11.2.2 Request and Response Parameters

As shown in Table JSP.11-1, the methods in the contract between the JSP con-
tainer and the JSP page require request and response parameters.

The formal type of the request parameter (which this specification calls
<ServletRequestSubtype>) is an interface that extends javax.servlet.ServletRe-

quest. The interface must define a protocol-dependent request contract between
the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification
calls <ServletResponseSubtype>) is an interface that extends javax.servlet.Servlet-

Response. The interface must define a protocol-dependent response contract
between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent
contract between the JSP container and the class that implements the JSP page.
The HTTP contract is defined by the javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe
syntactically the methods involving the Servlet(Request,Response) subtypes.
However, interfaces for specific protocols that extend JspPage can, just as
HttpJspPage describes them for the HTTP protocol.

JSP containers that conform to this specification (in both JSP page
implementation classes and JSP container runtime) must support the request and
response interfaces for the HTTP protocol as described in this section.

void jspDestroy() Method is optionally defined in
JSP page.
Method is invoked before
destroying the page.

void _jspService(<ServletRequestSubtype>,
<ServletResponseSubtype>) throws
IOException, ServletException

Method may not be defined in
JSP page.
The JSP container automatically
generates this method, based on
the contents of the JSP page.
Method invoked at each client
request.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

JSP CONTAINER2-8

JavaServer Pages 2.1 Specification

JSP.11.2.3 Omitting the extends Attribute

If the extends attribute of the page directive (see Section Section JSP.1.10.1,
“The page Directive”) in a JSP page is not used, the JSP container can generate any
class that satisfies the contract described in Table JSP.11-1, when it transforms the
JSP page.

In the following code examples, Code Example JSP.11-1 illustrates a generic
HTTP superclass named ExampleHttpSuper. Code Example JSP.11-2 shows a
subclass named _jsp1344 that extends ExampleHttpSuper and is the class
generated from the JSP page. By using separate _jsp1344 and ExampleHttpSuper

classes, the JSP page translator does not need to discover whether the JSP page
includes a declaration with jspInit or jspDestroy. This significantly simplifies the
implementation.

Code Example JSP.11-1A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

}

public void jspInit() {
}

public void jspDestroy() {
}

}

final public ServletConfig getServletConfig() {
return config;

}

JSP Page Implementation Class 2-9

JavaServer Pages 2.1 Specification

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return “A Superclass for an HTTP JSP”; // maybe better?
}

final public void destroy() {
jspDestroy();

}

/**
* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, response);
}

/**
* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Code Example JSP.11-2The Java Class Generated From a JSP Page

JSP CONTAINER2-10

JavaServer Pages 2.1 Specification

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a class generated for a JSP.
*
* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.
// Any of the following pieces may or not be present
// if they are not defined here the superclass methods
// will be used.

public void jspInit() {....}
public void jspDestroy() {....}

// The next method is generated automatically by the
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// initialization of the implicit variables
// ...

// next is code from scriptlets, expressions, and static text.

}

}

JSP.11.2.4 Using the extends Attribute

If the JSP page author uses extends, the generated class is identical to the one
shown in Code Example JSP.11-2, except that the class name is the one specified in
the extends attribute.

Buffering 2-11

JavaServer Pages 2.1 Specification

The contract on the JSP page implementation class does not change. The JSP
container should check (usually through reflection) that the provided superclass:

• Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

• All of the methods in the Servlet interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided
superclass satisfies:

• The service method of the servlet API invokes the _jspService method.

• The init(ServletConfig) method stores the configuration, makes it available via
getServletConfig, then invokes jspInit.

• The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the provided
superclass does not satisfy these requirements, but most JSP containers will not
check them.

JSP.11.3 Buffering

The JSP container buffers data (if the jsp directive specifies it using the buffer
attribute) as it is sent from the server to the client. Headers are not sent to the client
until the first flush method is invoked. Therefore, it is possible to call methods that
modify the response header, such as setContentType, sendRedirect, or error meth-
ods, up until the flush method is executed and the headers are sent. After that point,
these methods become invalid, as per the Servlet specification.

The javax.servlet.jsp.JspWriter class buffers and sends output. The JspWriter

class is used in the _jspService method as in the following example:

JSP CONTAINER2-12

JavaServer Pages 2.1 Specification

import javax.servlet.jsp.JspWriter;

static JspFactory _jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

// initialization of implicit variables...
PageContext pageContext = _jspFactory.createPageContext(

this,
request,
response,
false,
PageContext.DEFAULT_BUFFER,
false

);
JSPWriter out = pageContext.getOut();
//
// the body goes here using "out"
//
out.flush();

}

The complete listing of javax.servlet.jsp.JspWriter can be found in
Chapter JSP.12, “Core API”.

With buffering turned on, a redirect method can still be used in a scriptlet in a
.jsp file, by invoking response.redirect(someURL) directly.

JSP.11.4 Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 2.1
compliant containers must support a simple precompilation protocol, as well as
some basic reserved parameter names. Note that the precompilation protocol is
related but not the same as the notion of compiling a JSP page into a Servlet class
(Appendix JSP.A, “Packaging JSP Pages”).

JSP.11.4.1 Request Parameter Names

All request parameter names that start with the prefix jsp are reserved by the
JSP specification and should not be used by any user or implementation except as
indicated by the specification.

Debugging Requirements 2-13

JavaServer Pages 2.1 Specification

All JSPs pages should ignore (not depend on) any parameter that starts with
jsp_.

JSP.11.4.2 Precompilation Protocol

A request to a JSP page that has a request parameter with name jsp_precompile

is a precompilation request. The jsp_precompile parameter may have no value, or
may have values true or false. In all cases, the request should not be delivered to the
JSP page.

The intention of the precompilation request is that of a suggestion to the JSP
container to precompile the JSP page into its JSP page implementation class. The
suggestion is conveyed by giving the parameter the value true or no value, but note
that the request can be ignored.

For example:

1. ?jsp_precompile

2. ?jsp_precompile=true

3. ?jsp_precompile=false

4. ?foobar=foobaz&jsp_precompile=true

5. ?foobar=foobaz&jsp_precompile=false

1, 2, and 4 are legal; the request will not be delivered to the page. 3 and 5 are
legal; the request will not be delivered to the page.

6. ?jsp_precompile=foo

This is illegal and will generate an HTTP error; 500 (Server error).

JSP.11.5 Debugging Requirements

With the completion of JSR-45 ("Debugging Support for Other Languages"),
the JSP Compiler now has a standard format to convey source map debugging infor-
mation to tools such as debuggers. See http://jcp.org/jsr/detail/45.jsp for details.

JSP 2.1 containers are required to provide support for JSR-45 for JSP pages
and tag files written in either standard or XML syntax.

The JSP compiler must produce .class files with a SourceDebugExtension

attribute, mapping each line or lines of JSP code to the corresponding generated
line or lines of Java code. For both pages and tag files, the stratum that maps to the
original source should be named JSP in the Source Debug Extension (this stratum

JSP CONTAINER2-14

JavaServer Pages 2.1 Specification

name is reserved for use by the JSP specification). This stratum should be
specified as the default, unless the page or tag file was generated from some other
source.

The exact mechanism for causing the JSP compiler to produce source map
debugging information is implementation-dependent.

JSP.11.5.1 Line Number Mapping Guidelines

The following is a set of non-normative guidelines for generating high quality
line number mappings. The guidelines are presented to help produce a consistent
debugging experience for page authors, across containers. Where possible the JSP
container should generate line number mappings as follows:

1. Abreakpoint on a JSP line causes execution to stop before any Java code which
amounts to a translation of the JSP line is executed (for one possible exception,
see 5). Note that given the LineInfo Composition Algorithm (see JSR-45 spec-
ification), it is acceptable for the mappings to include one or more Java lines
which are never translated into executable byte code, as long as at least one of
them does.

2. It is permitted for two or more lines of JSP to include the same Java lines in
their mappings.

3. If a line of JSP has no manifestation in the Java source other than white-space
preserving source, it should not be mapped.

■ The following standard syntax JSP entities should not be mapped to gener-
ated code. These entities either have no manifestation in the generated Java
code (e.g. comments), or are not manifest in such a way that it allows the de-
bugged process to stop (e.g. the page directive import):

• JSP comments
• Directives

■ The following XML syntax JSP entities should not be mapped to generated
code. These entities frequently have no manifestation in the generated Java
code.

• <jsp:root>
• <jsp:output>

4. Declarations and scriptlets (standard or XML JSP). Lines in these constructs
should preserve a one-to-one mapping with the corresponding generated code
lines. Empty lines and comment lines are not mapped.

5. For scriptlets, scriptlet expressions, EL expressions, standard actions and cus-

Debugging Requirements 2-15

JavaServer Pages 2.1 Specification

tom actions in template text, a line containing one or more of these entities
should be mapped to Java source lines which include the corresponding Java
code.

If the line starts with template text, the Java code which handles it may be
excluded from the mappings if this would cause the debugger to stop before
the apparent execution of JSP lines preceding the line in question. For exam-
ple:

100 <p>This is a line with template text.</p>
101 <h1><fmt:message key="company" bundle="${bundle}"/></h1>

200 out.write("<p>This is a line with template text.</p>\r\n");
201 out.write("<h1>");
202 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
203 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
204 taghandler.setPageContext(pageContext);
205 ...

In this example, given that <h1> has its own call to write(), it makes sense to
map 101 to 201, 202 etc.

200 out.write("<p>This is a line with template text.</p>\r\n<h1>");
201 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
202 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
203 taghandler.setPageContext(pageContext);
204 ...

In this second example, given that <h1> is output using the same call to write()
that was used for line 100, mapping 101 to 202, 203 etc. may result in more
intuitive behavior of the debugger.

For scriptlets that contain more than one line, there should be a one-to-one
mapping from JSP to Java lines, and the mapping should start at the first Java
code that is not whitespace or comments. Therefore, a line that contains only
the open scriptlet delimeter is not mapped.

6. Scriptlet expressions and EL expressions in attribute values. The source line
mappings should include any Java source lines that deal with the evaluation of
the rtexpr value as well as source that deals with the JSP action.

7. Standard or custom actions.

■ Empty tags and start tags special case: The jsp:params action typically has
no manifestation and should not be mapped.

JSP CONTAINER2-16

JavaServer Pages 2.1 Specification

■ Empty tags and start tags: The Java line mappings should include as much of
the corresponding Java code as possible, including any separate lines that
deal with rtexpr evaluation as described in (6). If it is not possible to include
all the Java code in the mappings, the mapped lines should include the first
sequential line which deals with either the tag or the attribute evaluation in
order to meet (1).

■ Closing tags frequently do not have a manifestation in the Java source, but
sometimes do. In case a JSP line contains only a closing tag, the line may be
mapped to whitespace preserving Java source if it has no semantic transla-
tion. This will avoid a confusing user experience where it is sometimes pos-
sible to set a breakpoint on a line consisting of a closing tag and sometimes
not.

2-17

JSP.12
Core API

This chapter describes the javax.servlet.jsp package. The chapter includes
content that is generated automatically from Javadoc embedded into the actual Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

The javax.servlet.jsp package contains a number of classes and interfaces that
describe and define the contracts between a JSP page implementation class and
the runtime environment provided for an instance of such a class by a conforming
JSP container.

CORE API2-18

JavaServer Pages 2.1 Specification

javax.servlet.jsp 2-19

Package

javax.servlet.jsp
Description
Classes and interfaces for the Core JSP 2.1 API.

The javax.servlet.jsp package contains a number of classes and interfaces that describe and define the contracts
between a JSP page implementation class and the runtime environment provided for an instance of such a class
by a conforming JSP container.

JSP Page Implementation Object Contract
This section describes the basic contract between a JSP Page implementation object and its container.

The main contract is defined by the classes JspPage42 and HttpJspPage24. The JspFactory39 class
describes the mechanism to portably instantiate all needed runtime objects, and JspEngineInfo35 provides
basic information on the current JSP container. Class JspApplicationContext26 stores application-
scoped information relevant to JSP containers. It was added in JSP 2.1 to support the integration of the unified
Expression Language.

None of these classes are intended to be used by JSP page authors; an example of how these classes may be used
is included below.

Implicit Objects
The PageContext56 object and the JspWriter46 are available by default as implicit objects.

Exceptions
The JspException37 class is the base class for all JSP exceptions. The JspTagException44 and
SkipPageException65 exceptions are used by the tag extension mechanism.

For JSP error pages, the ErrorData22 class encapsulates information about the error.

An Implementation Example
An instance of an implementation dependent subclass of the PageContext56 abstract base class can be
created by a JSP implementation class at the beginning of it’s _jspService() method via an
implementation default JspFactory39.

Here is one example of how to use these classes

javax.servlet.jsp

2-20 JavaServer Pages 2.1 Specification • May 2006

public class foo implements Servlet {
// ...
public void _jspService(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

JspFactory factory = JspFactory.getDefaultFactory();
PageContext pageContext = factory.getPageContext(

this,
request,
response,
null, // errorPageURL
false, // needsSession
JspWriter.DEFAULT_BUFFER,
true // autoFlush
);

// initialize implicit variables for scripting env ...
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();
Object page = this;
try {

// body of translated JSP here ...
} catch (Exception e) {

out.clear();
pageContext.handlePageException(e);

} finally {
out.close();

factory.releasePageContext(pageContext);
}

}

Class Summary

Interfaces

HttpJspPage24 The HttpJspPage interface describes the interaction that a JSP Page Implementation
Class must satisfy when using the HTTP protocol.

JspApplicationContext2
6

Stores application-scoped information relevant to JSP containers.

JspPage42 The JspPage interface describes the generic interaction that a JSP Page Implementation
class must satisfy; pages that use the HTTP protocol are described by the HttpJspPage
interface.

Classes

ErrorData22 Contains information about an error, for error pages.

JspContext29 JspContext serves as the base class for the PageContext class and abstracts all
information that is not specific to servlets.

JspEngineInfo35 The JspEngineInfo is an abstract class that provides information on the current JSP
engine.

JspFactory39 The JspFactory is an abstract class that defines a number of factory methods available
to a JSP page at runtime for the purposes of creating instances of various interfaces and
classes used to support the JSP implementation.

JspWriter46 The actions and template data in a JSP page is written using the JspWriter object that is
referenced by the implicit variable out which is initialized automatically using methods
in the PageContext object.

javax.servlet.jsp

javax.servlet.jsp 2-21

PageContext56 PageContext extends JspContext to provide useful context information for when JSP
technology is used in a Servlet environment.

Exceptions

JspException37 A generic exception known to the JSP engine; uncaught JspExceptions will result in an
invocation of the errorpage machinery.

JspTagException44 Exception to be used by a Tag Handler to indicate some unrecoverable error.

SkipPageException65 Exception to indicate the calling page must cease evaluation.

Class Summary

ErrorData javax.servlet.jsp

ErrorData(Throwable, int, String, String)

2-22 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

ErrorData
Declaration
public final class ErrorData

java.lang.Object
|
+--javax.servlet.jsp.ErrorData

Description
Contains information about an error, for error pages. The information contained in this instance is meaningless
if not used in the context of an error page. To indicate a JSP is an error page, the page author must set the
isErrorPage attribute of the page directive to “true”.

Since: JSP 2.0

See Also: PageContext.getErrorData()60

Constructors

ErrorData(Throwable, int, String, String)

public ErrorData(java.lang.Throwable throwable, int statusCode, java.lang.String uri,

java.lang.String servletName)

Member Summary

Constructors
ErrorData(java.lang.Throwable throwable, int statusCode,
java.lang.String uri, java.lang.String servletName)22

Methods
 java.lang.String getRequestURI()23
 java.lang.String getServletName()23

 int getStatusCode()23
 java.lang.Throwable getThrowable()23

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

javax.servlet.jsp ErrorData

getRequestURI()

javax.servlet.jsp ErrorData 2-23

Creates a new ErrorData object.

Parameters:
throwable - The Throwable that is the cause of the error

statusCode - The status code of the error

uri - The request URI

servletName - The name of the servlet invoked

Methods

getRequestURI()

public java.lang.String getRequestURI()

Returns the request URI.

Returns: The request URI

getServletName()

public java.lang.String getServletName()

Returns the name of the servlet invoked.

Returns: The name of the servlet invoked

getStatusCode()

public int getStatusCode()

Returns the status code of the error.

Returns: The status code of the error

getThrowable()

public java.lang.Throwable getThrowable()

Returns the Throwable that caused the error.

Returns: The Throwable that caused the error

HttpJspPage javax.servlet.jsp

_jspService(HttpServletRequest, HttpServletResponse)

2-24 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

HttpJspPage
Declaration
public interface HttpJspPage extends JspPage42

All Superinterfaces: JspPage42, javax.servlet.Servlet

Description
The HttpJspPage interface describes the interaction that a JSP Page Implementation Class must satisfy when
using the HTTP protocol.

The behaviour is identical to that of the JspPage, except for the signature of the _jspService method, which is
now expressible in the Java type system and included explicitly in the interface.

See Also: JspPage42

Methods

_jspService(HttpServletRequest, HttpServletResponse)

public void _jspService(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

throws ServletException, IOException

The _jspService()method corresponds to the body of the JSP page. This method is defined automatically by
the JSP container and should never be defined by the JSP page author.

Member Summary

Methods
 void _jspService(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)24

Inherited Member Summary

Methods inherited from interface JspPage42

jspDestroy()43, jspInit()43

Methods inherited from interface Servlet

destroy(), getServletConfig(), getServletInfo(), init(ServletConfig),
service(ServletRequest, ServletResponse)

javax.servlet.jsp HttpJspPage

_jspService(HttpServletRequest, HttpServletResponse)

javax.servlet.jsp HttpJspPage 2-25

If a superclass is specified using the extends attribute, that superclass may choose to perform some actions
in its service() method before or after calling the _jspService() method. See using the extends attribute in
the JSP_Engine chapter of the JSP specification.

Parameters:
request - Provides client request information to the JSP.

response - Assists the JSP in sending a response to the client.

Throws:
javax.servlet.ServletException - Thrown if an error occurred during the processing of the
JSP and that the container should take appropriate action to clean up the request.

java.io.IOException - Thrown if an error occurred while writing the response for this page.

JspApplicationContext javax.servlet.jsp

addELContextListener(ELContextListener)

2-26 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

JspApplicationContext
Declaration
public interface JspApplicationContext

Description
Stores application-scoped information relevant to JSP containers.

The JSP container must create a single instance of JspApplicationContext for each
ServletContext instance.

An instance of JspApplicationContext is obtained by invoking the static
JspFactory.getJspApplicationContext(ServletContext)40 method, passing the
ServletContext of the corresponding web application.

The JspApplicationContext provides the following services to JSP applications:

• Allows registration of ELResolvers, which are used to resolve variables in EL expressions contained in
JSP pages and tag files.

• Provides an instance of ExpressionFactory for those applications or frameworks that need to perform
programmatic evaluation of EL expressions instead of allowing the JSP container to do it for them.

• Allows the attachment of ELContextListener instances for notification whenever a new ELContext
is created. This is necessary when an application wishes to make custom context objects available to their
pluggable ELResolvers.

Since: JSP 2.1

See Also: javax.servlet.ServletContext, JspFactory39, javax.el.ELResolver,
javax.el.ExpressionFactory, javax.el.ELContextListener

Methods

addELContextListener(ELContextListener)

public void addELContextListener(javax.el.ELContextListener listener)

Member Summary

Methods
 void addELContextListener(javax.el.ELContextListener listener)26
 void addELResolver(javax.el.ELResolver resolver)27

javax.el.ExpressionFac
tory

getExpressionFactory()28

javax.servlet.jsp JspApplicationContext

addELResolver(ELResolver)

javax.servlet.jsp JspApplicationContext 2-27

Registers a ELContextListeners so that context objects can be added whenever a new ELContext is
created.

At a minimum, the ELContext objects created will contain a reference to the JspContext for this
request, which is added by the JSP container. This is sufficient for all the default ELResolvers listed in
addELResolver(ELResolver)27. Note that JspContext.class is used as the key to
ELContext.putContext() for the JspContext object reference.

This method is generally used by frameworks and applications that register their own ELResolver that
needs context other than JspContext. The listener will typically add the necessary context to the
ELContext provided in the event object. Registering a listener that adds context allows the
ELResolvers in the stack to access the context they need when they do a resolution.

Parameters:
listener - The listener to be notified when a new ELContext is created.

addELResolver(ELResolver)

public void addELResolver(javax.el.ELResolver resolver)

Adds an ELResolver to affect the way EL variables and properties are resolved for EL expressions
appearing in JSP pages and tag files.

For example, in the EL expression ${employee.lastName}, an ELResolver determines what object
“employee” references and how to find its “lastName” property.

When evaluating an expression, the JSP container will consult a set of standard resolvers as well as any
resolvers registered via this method. The set of resolvers are consulted in the following order:

• javax.servlet.jsp.el.ImplicitObjectELResolver184

• ELResolvers registered via this method, in the order in which they are registered.

• javax.el.MapELResolver

• javax.el.ListELResolver

• javax.el.ArrayELResolver

• javax.el.BeanELResolver

• javax.servlet.jsp.el.ScopedAttributeELResolver189

It is illegal to register an ELResolver after the application has received any request from the client. If an
attempt is made to register an ELResolver after that time, an IllegalStateException is thrown.

This restriction is in place to allow the JSP container to optimize for the common case where no additional
ELResolvers are in the chain, aside from the standard ones. It is permissible to add ELResolvers
before or after initialization to a CompositeELResolver that is already in the chain.

It is not possible to remove an ELResolver registered with this method, once it has been registered.

Parameters:
resolver - The new ELResolver

Throws:
java.lang.IllegalStateException - if an attempt is made to call this method after all
ServletContextListeners have had their contextInitialized methods invoked.

JspApplicationContext javax.servlet.jsp

getExpressionFactory()

2-28 JavaServer Pages 2.1 Specification • May 2006

getExpressionFactory()

public javax.el.ExpressionFactory getExpressionFactory()

Returns a factory used to create ValueExpressions and MethodExpressions so that EL
expressions can be parsed and evaluated.

Returns: A concrete implementation of the an ExpressionFactory.

javax.servlet.jsp JspContext

getExpressionFactory()

javax.servlet.jsp JspContext 2-29

javax.servlet.jsp

JspContext
Declaration
public abstract class JspContext

java.lang.Object
|
+--javax.servlet.jsp.JspContext

Direct Known Subclasses: PageContext56

Description
JspContext serves as the base class for the PageContext class and abstracts all information that is not
specific to servlets. This allows for Simple Tag Extensions to be used outside of the context of a request/
response Servlet.

The JspContext provides a number of facilities to the page/component author and page implementor, including:

• a single API to manage the various scoped namespaces

• a mechanism to obtain the JspWriter for output

• a mechanism to expose page directive attributes to the scripting environment

Methods Intended for Container Generated Code

The following methods enable the management of nested JspWriter streams to implement Tag Extensions:
pushBody() and popBody()

Methods Intended for JSP authors

Some methods provide uniform access to the diverse objects representing scopes. The implementation must
use the underlying machinery corresponding to that scope, so information can be passed back and forth
between the underlying environment (e.g. Servlets) and JSP pages. The methods are: setAttribute(),
getAttribute(), findAttribute(), removeAttribute(), getAttributesScope() and
getAttributeNamesInScope().

The following methods provide convenient access to implicit objects: getOut()

The following methods provide programmatic access to the Expression Language evaluator:
getExpressionEvaluator(), getVariableResolver()

Since: JSP 2.0

Member Summary

Constructors
JspContext()30

Methods
abstract

java.lang.Object
findAttribute(java.lang.String name)30

JspContext javax.servlet.jsp

JspContext()

2-30 JavaServer Pages 2.1 Specification • May 2006

Constructors

JspContext()

public JspContext()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

findAttribute(String)

public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and application scope(s) in order and
returns the value associated or null.

abstract
java.lang.Object

getAttribute(java.lang.String name)31

abstract
java.lang.Object

getAttribute(java.lang.String name, int scope)31

abstract
java.util.Enumeration

<java.lang.String>

getAttributeNamesInScope(int scope)31

abstract int getAttributesScope(java.lang.String name)32
abstract

javax.el.ELContext
getELContext()32

abstract
javax.servlet.jsp.el.E

xpressionEvaluator

getExpressionEvaluator()32

abstract JspWriter getOut()32
abstract

javax.servlet.jsp.el.V
ariableResolver

getVariableResolver()32

 JspWriter popBody()33
 JspWriter pushBody(java.io.Writer writer)33

abstract void removeAttribute(java.lang.String name)33
abstract void removeAttribute(java.lang.String name, int scope)33
abstract void setAttribute(java.lang.String name, java.lang.Object value)34
abstract void setAttribute(java.lang.String name, java.lang.Object value,

int scope)34

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

javax.servlet.jsp JspContext

getAttribute(String)

javax.servlet.jsp JspContext 2-31

Parameters:
name - the name of the attribute to search for

Returns: the value associated or null

Throws:
java.lang.NullPointerException - if the name is null

getAttribute(String)

public abstract java.lang.Object getAttribute(java.lang.String name)

Returns the object associated with the name in the page scope or null if not found.

Parameters:
name - the name of the attribute to get

Returns: the object associated with the name in the page scope or null if not found.

Throws:
java.lang.NullPointerException - if the name is null

getAttribute(String, int)

public abstract java.lang.Object getAttribute(java.lang.String name, int scope)

Return the object associated with the name in the specified scope or null if not found.

Parameters:
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Returns: the object associated with the name in the specified scope or null if not found.

Throws:
java.lang.NullPointerException - if the name is null

java.lang.IllegalArgumentException - if the scope is invalid

java.lang.IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has been invalidated.

getAttributeNamesInScope(int)

public abstract java.util.Enumeration<java.lang.String> getAttributeNamesInScope(int

scope)

Enumerate all the attributes in a given scope.

Parameters:
scope - the scope to enumerate all the attributes for

Returns: an enumeration of names (java.lang.String) of all the attributes the specified scope

Throws:
java.lang.IllegalArgumentException - if the scope is invalid

java.lang.IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has been invalidated.

JspContext javax.servlet.jsp

getAttributesScope(String)

2-32 JavaServer Pages 2.1 Specification • May 2006

getAttributesScope(String)

public abstract int getAttributesScope(java.lang.String name)

Get the scope where a given attribute is defined.

Parameters:
name - the name of the attribute to return the scope for

Returns: the scope of the object associated with the name specified or 0

Throws:
java.lang.NullPointerException - if the name is null

getELContext()

public abstract javax.el.ELContext getELContext()

Returns the ELContext associated with this JspContext.

The ELContext is created lazily and is reused if it already exists. There is a new ELContext for each
JspContext.

The ELContext must contain the ELResolver described in the JSP specification (and in the javadocs
for JspApplicationContext.addELResolver(ELResolver)27).

Returns: The ELContext associated with this JspContext.

Since: JSP 2.1

getExpressionEvaluator()

public abstract javax.servlet.jsp.el.ExpressionEvaluator180 getExpressionEvaluator()

Deprecated. As of JSP 2.1, replaced by
JspApplicationContext.getExpressionFactory()28

Provides programmatic access to the ExpressionEvaluator. The JSP Container must return a valid instance
of an ExpressionEvaluator that can parse EL expressions.

Returns: A valid instance of an ExpressionEvaluator.

Since: JSP 2.0

getOut()

public abstract javax.servlet.jsp.JspWriter46 getOut()

The current value of the out object (a JspWriter).

Returns: the current JspWriter stream being used for client response

getVariableResolver()

public abstract javax.servlet.jsp.el.VariableResolver194 getVariableResolver()

Deprecated. As of JSP 2.1, replaced by javax.el.ELContext.getELResolver(), which can be
obtained by jspContext.getELContext().getELResolver().

Returns an instance of a VariableResolver that provides access to the implicit objects specified in the JSP
specification using this JspContext as the context object.

Returns: A valid instance of a VariableResolver.

javax.servlet.jsp JspContext

popBody()

javax.servlet.jsp JspContext 2-33

Since: JSP 2.0

popBody()

public javax.servlet.jsp.JspWriter46 popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and update the value of the “out”
attribute in the page scope attribute namespace of the JspContext.

Returns: the saved JspWriter.

pushBody(Writer)

public javax.servlet.jsp.JspWriter46 pushBody(java.io.Writer writer)

Return a new JspWriter object that sends output to the provided Writer. Saves the current “out” JspWriter,
and updates the value of the “out” attribute in the page scope attribute namespace of the JspContext.

The returned JspWriter must implement all methods and behave as though it were unbuffered. More
specifically:

• clear() must throw an IOException

• clearBuffer() does nothing

• getBufferSize() always returns 0

• getRemaining() always returns 0

Parameters:
writer - The Writer for the returned JspWriter to send output to.

Returns: a new JspWriter that writes to the given Writer.

Since: JSP 2.0

removeAttribute(String)

public abstract void removeAttribute(java.lang.String name)

Remove the object reference associated with the given name from all scopes. Does nothing if there is no
such object.

Parameters:
name - The name of the object to remove.

Throws:
java.lang.NullPointerException - if the name is null

removeAttribute(String, int)

public abstract void removeAttribute(java.lang.String name, int scope)

Remove the object reference associated with the specified name in the given scope. Does nothing if there is
no such object.

Parameters:
name - The name of the object to remove.

scope - The scope where to look.

Throws:
java.lang.IllegalArgumentException - if the scope is invalid

JspContext javax.servlet.jsp

setAttribute(String, Object)

2-34 JavaServer Pages 2.1 Specification • May 2006

java.lang.IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has been invalidated.

java.lang.NullPointerException - if the name is null

setAttribute(String, Object)

public abstract void setAttribute(java.lang.String name, java.lang.Object value)

Register the name and value specified with page scope semantics. If the value passed in is null, this has
the same effect as calling removeAttribute(name, PageContext.PAGE_SCOPE).

Parameters:
name - the name of the attribute to set

value - the value to associate with the name, or null if the attribute is to be removed from the page
scope.

Throws:
java.lang.NullPointerException - if the name is null

setAttribute(String, Object, int)

public abstract void setAttribute(java.lang.String name, java.lang.Object value,

int scope)

Register the name and value specified with appropriate scope semantics. If the value passed in is null,
this has the same effect as calling removeAttribute(name, scope).

Parameters:
name - the name of the attribute to set

value - the object to associate with the name, or null if the attribute is to be removed from the
specified scope.

scope - the scope with which to associate the name/object

Throws:
java.lang.NullPointerException - if the name is null

java.lang.IllegalArgumentException - if the scope is invalid

java.lang.IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has been invalidated.

javax.servlet.jsp JspEngineInfo

JspEngineInfo()

javax.servlet.jsp JspEngineInfo 2-35

javax.servlet.jsp

JspEngineInfo
Declaration
public abstract class JspEngineInfo

java.lang.Object
|
+--javax.servlet.jsp.JspEngineInfo

Description
The JspEngineInfo is an abstract class that provides information on the current JSP engine.

Constructors

JspEngineInfo()

public JspEngineInfo()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

getSpecificationVersion()

public abstract java.lang.String getSpecificationVersion()

Return the version number of the JSP specification that is supported by this JSP engine.

Member Summary

Constructors
JspEngineInfo()35

Methods
abstract

java.lang.String
getSpecificationVersion()35

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

JspEngineInfo javax.servlet.jsp

getSpecificationVersion()

2-36 JavaServer Pages 2.1 Specification • May 2006

Specification version numbers that consists of positive decimal integers separated by periods “.”, for
example, “2.0” or “1.2.3.4.5.6.7”. This allows an extensible number to be used to represent major, minor,
micro, etc versions. The version number must begin with a number.

Returns: the specification version, null is returned if it is not known

javax.servlet.jsp JspException

getSpecificationVersion()

javax.servlet.jsp JspException 2-37

javax.servlet.jsp

JspException
Declaration
public class JspException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.servlet.jsp.JspException

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: JspTagException44, SkipPageException65

Description
A generic exception known to the JSP engine; uncaught JspExceptions will result in an invocation of the
errorpage machinery.

Member Summary

Constructors
JspException()38
JspException(java.lang.String msg)38
JspException(java.lang.String message, java.lang.Throwable
cause)38
JspException(java.lang.Throwable cause)38

Methods
 java.lang.Throwable getRootCause()38

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

JspException javax.servlet.jsp

JspException()

2-38 JavaServer Pages 2.1 Specification • May 2006

Constructors

JspException()

public JspException()

Construct a JspException.

JspException(String)

public JspException(java.lang.String msg)

Constructs a new JSP exception with the specified message. The message can be written to the server log
and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

JspException(String, Throwable)

public JspException(java.lang.String message, java.lang.Throwable cause)

Constructs a new JspException with the specified detail message and cause. The cause is saved for
later retrieval by the java.lang.Throwable.getCause() and getRootCause()38 methods.

See Also: java.lang.Exception.Exception(String, Throwable)

JspException(Throwable)

public JspException(java.lang.Throwable cause)

Constructs a new JspException with the specified cause. The cause is saved for later retrieval by the
java.lang.Throwable.getCause() and getRootCause()38 methods.

See Also: java.lang.Exception.Exception(Throwable)

Methods

getRootCause()

public java.lang.Throwable getRootCause()

Deprecated. As of JSP 2.1, replaced by java.lang.Throwable.getCause()

Returns the exception that caused this JSP exception.

Returns: the Throwable that caused this JSP exception

javax.servlet.jsp JspFactory

getRootCause()

javax.servlet.jsp JspFactory 2-39

javax.servlet.jsp

JspFactory
Declaration
public abstract class JspFactory

java.lang.Object
|
+--javax.servlet.jsp.JspFactory

Description
The JspFactory is an abstract class that defines a number of factory methods available to a JSP page at runtime
for the purposes of creating instances of various interfaces and classes used to support the JSP implementation.

A conformant JSP Engine implementation will, during it’s initialization instantiate an implementation
dependent subclass of this class, and make it globally available for use by JSP implementation classes by
registering the instance created with this class via the static setDefaultFactory() method.

The only implementation-dependent classes that can be created from the factory are: PageContext,
JspEngineInfo, and JspApplicationContext.

With the exception of JspApplicationContext, JspFactory objects should not be used by JSP application
developers.

Member Summary

Constructors
JspFactory()40

Methods
static JspFactory getDefaultFactory()40

abstract JspEngineInfo getEngineInfo()40
abstract

JspApplicationContext
getJspApplicationContext(javax.servlet.ServletContext
context)40

abstract PageContext getPageContext(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String
errorPageURL, boolean needsSession, int buffer, boolean
autoflush)40

abstract void releasePageContext(PageContext pc)41
static void setDefaultFactory(JspFactory deflt)41

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

JspFactory javax.servlet.jsp

JspFactory()

2-40 JavaServer Pages 2.1 Specification • May 2006

Constructors

JspFactory()

public JspFactory()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

getDefaultFactory()

public static javax.servlet.jsp.JspFactory39 getDefaultFactory()

Returns the default factory for this implementation.

Returns: the default factory for this implementation

getEngineInfo()

public abstract javax.servlet.jsp.JspEngineInfo35 getEngineInfo()

 called to get implementation-specific information on the current JSP engine.

Returns: a JspEngineInfo object describing the current JSP engine

getJspApplicationContext(ServletContext)

public abstract javax.servlet.jsp.JspApplicationContext26
getJspApplicationContext(javax.servlet.ServletContext context)

Obtains the JspApplicationContext instance associated with the web application for the given
ServletContext.

Parameters:
context - The ServletContext for the web application the desired
JspApplicationContext is associated with.

Returns: The JspApplicationContext associated with the web application.

Since: 2.1

getPageContext(Servlet, ServletRequest, ServletResponse, String, boolean, int, boolean)

public abstract javax.servlet.jsp.PageContext56 getPageContext(javax.servlet.Servlet

servlet, javax.servlet.ServletRequest request,

javax.servlet.ServletResponse response, java.lang.String errorPageURL,

boolean needsSession, int buffer, boolean autoflush)

 obtains an instance of an implementation dependent javax.servlet.jsp.PageContext abstract class for the
calling Servlet and currently pending request and response.

This method is typically called early in the processing of the _jspService() method of a JSP implementation
class in order to obtain a PageContext object for the request being processed.

Invoking this method shall result in the PageContext.initialize() method being invoked. The PageContext
returned is properly initialized.

javax.servlet.jsp JspFactory

releasePageContext(PageContext)

javax.servlet.jsp JspFactory 2-41

All PageContext objects obtained via this method shall be released by invoking releasePageContext().

Parameters:
servlet - the requesting servlet

request - the current request pending on the servlet

response - the current response pending on the servlet

errorPageURL - the URL of the error page for the requesting JSP, or null

needsSession - true if the JSP participates in a session

buffer - size of buffer in bytes, PageContext.NO_BUFFER if no buffer,
PageContext.DEFAULT_BUFFER if implementation default.

autoflush - should the buffer autoflush to the output stream on buffer overflow, or throw an
IOException?

Returns: the page context

See Also: PageContext56

releasePageContext(PageContext)

public abstract void releasePageContext(javax.servlet.jsp.PageContext56 pc)

 called to release a previously allocated PageContext object. Results in PageContext.release() being
invoked. This method should be invoked prior to returning from the _jspService() method of a JSP
implementation class.

Parameters:
pc - A PageContext previously obtained by getPageContext()

setDefaultFactory(JspFactory)

public static void setDefaultFactory(javax.servlet.jsp.JspFactory39 deflt)

 set the default factory for this implementation. It is illegal for any principal other than the JSP Engine
runtime to call this method.

Parameters:
deflt - The default factory implementation

JspPage javax.servlet.jsp

setDefaultFactory(JspFactory)

2-42 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

JspPage
Declaration
public interface JspPage extends javax.servlet.Servlet

All Superinterfaces: javax.servlet.Servlet

All Known Subinterfaces: HttpJspPage24

Description
The JspPage interface describes the generic interaction that a JSP Page Implementation class must satisfy; pages
that use the HTTP protocol are described by the HttpJspPage interface.

Two plus One Methods

The interface defines a protocol with 3 methods; only two of them: jspInit() and jspDestroy() are part of this
interface as the signature of the third method: _jspService() depends on the specific protocol used and cannot be
expressed in a generic way in Java.

A class implementing this interface is responsible for invoking the above methods at the appropriate time based
on the corresponding Servlet-based method invocations.

The jspInit() and jspDestroy() methods can be defined by a JSP author, but the _jspService() method is defined
automatically by the JSP processor based on the contents of the JSP page.

_jspService()

The _jspService()method corresponds to the body of the JSP page. This method is defined automatically by the
JSP container and should never be defined by the JSP page author.

If a superclass is specified using the extends attribute, that superclass may choose to perform some actions in its
service() method before or after calling the _jspService() method. See using the extends attribute in the
JSP_Engine chapter of the JSP specification.

The specific signature depends on the protocol supported by the JSP page.

public void _jspService(ServletRequestSubtype request,
ServletResponseSubtype response)

throws ServletException, IOException;

Member Summary

Methods
 void jspDestroy()43
 void jspInit()43

javax.servlet.jsp JspPage

jspDestroy()

javax.servlet.jsp JspPage 2-43

Methods

jspDestroy()

public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be destroyed. A JSP page can override
this method by including a definition for it in a declaration element. A JSP page should redefine the
destroy() method from Servlet.

jspInit()

public void jspInit()

The jspInit() method is invoked when the JSP page is initialized. It is the responsibility of the JSP
implementation (and of the class mentioned by the extends attribute, if present) that at this point invocations
to the getServletConfig() method will return the desired value. A JSP page can override this method by
including a definition for it in a declaration element. A JSP page should redefine the init() method from
Servlet.

Inherited Member Summary

Methods inherited from interface Servlet

destroy(), getServletConfig(), getServletInfo(), init(ServletConfig),
service(ServletRequest, ServletResponse)

JspTagException javax.servlet.jsp

jspInit()

2-44 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

JspTagException
Declaration
public class JspTagException extends JspException37

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.servlet.jsp.JspException37

|
+--javax.servlet.jsp.JspTagException

All Implemented Interfaces: java.io.Serializable

Description
Exception to be used by a Tag Handler to indicate some unrecoverable error. This error is to be caught by the
top level of the JSP page and will result in an error page.

Member Summary

Constructors
JspTagException()45
JspTagException(java.lang.String msg)45
JspTagException(java.lang.String message, java.lang.Throwable
rootCause)45
JspTagException(java.lang.Throwable rootCause)45

Inherited Member Summary

Methods inherited from interface JspException37

getRootCause()38

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

javax.servlet.jsp JspTagException

JspTagException(String)

javax.servlet.jsp JspTagException 2-45

Constructors

JspTagException(String)

public JspTagException(java.lang.String msg)

Constructs a new JspTagException with the specified message. The message can be written to the server log
and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

JspTagException()

public JspTagException()

Constructs a new JspTagException with no message.

JspTagException(String, Throwable)

public JspTagException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new JspTagException when the JSP Tag needs to throw an exception and include a message
about the “root cause” exception that interfered with its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the JSP Tag’s normal operation, making
this JSP Tag exception necessary

Since: JSP 2.0

JspTagException(Throwable)

public JspTagException(java.lang.Throwable rootCause)

Constructs a new JSP Tag exception when the JSP Tag needs to throw an exception and include a message
about the “root cause” exception that interfered with its normal operation. The exception’s message is based
on the localized message of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable exception to get a localized
exception message. When subclassing JspTagException, this method can be overridden to create an
exception message designed for a specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the JSP Tag’s normal operation, making
the JSP Tag exception necessary

Since: JSP 2.0

JspWriter javax.servlet.jsp

JspTagException(Throwable)

2-46 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

JspWriter
Declaration
public abstract class JspWriter extends java.io.Writer

java.lang.Object
|
+--java.io.Writer

|
+--javax.servlet.jsp.JspWriter

All Implemented Interfaces: java.lang.Appendable, java.io.Closeable,
java.io.Flushable

Direct Known Subclasses: javax.servlet.jsp.tagext.BodyContent88

Description
 The actions and template data in a JSP page is written using the JspWriter object that is referenced by the
implicit variable out which is initialized automatically using methods in the PageContext object.

This abstract class emulates some of the functionality found in the java.io.BufferedWriter and
java.io.PrintWriter classes, however it differs in that it throws java.io.IOException from the print methods while
PrintWriter does not.

Buffering

The initial JspWriter object is associated with the PrintWriter object of the ServletResponse in a way that
depends on whether the page is or is not buffered. If the page is not buffered, output written to this JspWriter
object will be written through to the PrintWriter directly, which will be created if necessary by invoking the
getWriter() method on the response object. But if the page is buffered, the PrintWriter object will not be created
until the buffer is flushed and operations like setContentType() are legal. Since this flexibility simplifies
programming substantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two approaches can be taken:

• Exceeding the buffer is not a fatal error; when the buffer is exceeded, just flush the output.

• Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an exception.

Both approaches are valid, and thus both are supported in the JSP technology. The behavior of a page is
controlled by the autoFlush attribute, which defaults to true. In general, JSP pages that need to be sure that
correct and complete data has been sent to their client may want to set autoFlush to false, with a typical case
being that where the client is an application itself. On the other hand, JSP pages that send data that is
meaningful even when partially constructed may want to set autoFlush to true; such as when the data is sent for
immediate display through a browser. Each application will need to consider their specific needs.

An alternative considered was to make the buffer size unbounded; but, this had the disadvantage that runaway
computations would consume an unbounded amount of resources.

The “out” implicit variable of a JSP implementation class is of this type. If the page directive selects
autoflush=“true” then all the I/O operations on this class shall automatically flush the contents of the buffer if an
overflow condition would result if the current operation were performed without a flush. If autoflush=“false”

javax.servlet.jsp JspWriter

JspTagException(Throwable)

javax.servlet.jsp JspWriter 2-47

then all the I/O operations on this class shall throw an IOException if performing the current operation would
result in a buffer overflow condition.

See Also: java.io.Writer, java.io.BufferedWriter, java.io.PrintWriter

Member Summary

Fields
protected boolean autoFlush48

protected int bufferSize48
static int DEFAULT_BUFFER48
static int NO_BUFFER48
static int UNBOUNDED_BUFFER48

Constructors
protected JspWriter(int bufferSize, boolean autoFlush)48

Methods
abstract void clear()49
abstract void clearBuffer()49
abstract void close()49
abstract void flush()49

 int getBufferSize()50
abstract int getRemaining()50

 boolean isAutoFlush()50
abstract void newLine()50
abstract void print(boolean b)50
abstract void print(char c)50
abstract void print(char[] s)52
abstract void print(double d)51
abstract void print(float f)51
abstract void print(int i)51
abstract void print(long l)51
abstract void print(java.lang.Object obj)52
abstract void print(java.lang.String s)52
abstract void println()53
abstract void println(boolean x)53
abstract void println(char x)53
abstract void println(char[] x)54
abstract void println(double x)54
abstract void println(float x)54
abstract void println(int x)53
abstract void println(long x)53
abstract void println(java.lang.Object x)55
abstract void println(java.lang.String x)54

Inherited Member Summary

Fields inherited from class Writer

JspWriter javax.servlet.jsp

autoFlush

2-48 JavaServer Pages 2.1 Specification • May 2006

Fields

autoFlush

protected boolean autoFlush

Whether the JspWriter is autoflushing.

bufferSize

protected int bufferSize

The size of the buffer used by the JspWriter.

DEFAULT_BUFFER

public static final int DEFAULT_BUFFER

Constant indicating that the Writer is buffered and is using the implementation default buffer size.

NO_BUFFER

public static final int NO_BUFFER

Constant indicating that the Writer is not buffering output.

UNBOUNDED_BUFFER

public static final int UNBOUNDED_BUFFER

Constant indicating that the Writer is buffered and is unbounded; this is used in BodyContent.

Constructors

JspWriter(int, boolean)

protected JspWriter(int bufferSize, boolean autoFlush)

Protected constructor.

Parameters:
bufferSize - the size of the buffer to be used by the JspWriter

lock

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Methods inherited from class Writer

append(char), append(CharSequence), append(CharSequence, int, int), write(char[]),
write(char[], int, int), write(int), write(String), write(String, int, int)

Inherited Member Summary

javax.servlet.jsp JspWriter

clear()

javax.servlet.jsp JspWriter 2-49

autoFlush - whether the JspWriter should be autoflushing

Methods

clear()

public abstract void clear()

throws IOException

Clear the contents of the buffer. If the buffer has been already been flushed then the clear operation shall
throw an IOException to signal the fact that some data has already been irrevocably written to the client
response stream.

Throws:
java.io.IOException - If an I/O error occurs

clearBuffer()

public abstract void clearBuffer()

throws IOException

Clears the current contents of the buffer. Unlike clear(), this method will not throw an IOException if the
buffer has already been flushed. It merely clears the current content of the buffer and returns.

Throws:
java.io.IOException - If an I/O error occurs

close()

public abstract void close()

throws IOException

Close the stream, flushing it first.

This method needs not be invoked explicitly for the initial JspWriter as the code generated by the JSP
container will automatically include a call to close().

Closing a previously-closed stream, unlike flush(), has no effect.

Overrides: close in class Writer

Throws:
java.io.IOException - If an I/O error occurs

flush()

public abstract void flush()

throws IOException

Flush the stream. If the stream has saved any characters from the various write() methods in a buffer, write
them immediately to their intended destination. Then, if that destination is another character or byte stream,
flush it. Thus one flush() invocation will flush all the buffers in a chain of Writers and OutputStreams.

The method may be invoked indirectly if the buffer size is exceeded.

Once a stream has been closed, further write() or flush() invocations will cause an IOException to be
thrown.

Overrides: flush in class Writer

JspWriter javax.servlet.jsp

getBufferSize()

2-50 JavaServer Pages 2.1 Specification • May 2006

Throws:
java.io.IOException - If an I/O error occurs

getBufferSize()

public int getBufferSize()

This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.

getRemaining()

public abstract int getRemaining()

This method returns the number of unused bytes in the buffer.

Returns: the number of bytes unused in the buffer

isAutoFlush()

public boolean isAutoFlush()

This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter is auto flushing or throwing IOExceptions on buffer overflow conditions

newLine()

public abstract void newLine()

throws IOException

Write a line separator. The line separator string is defined by the system property line.separator, and
is not necessarily a single newline (’\n’) character.

Throws:
java.io.IOException - If an I/O error occurs

print(boolean)

public abstract void print(boolean b)

throws IOException

Print a boolean value. The string produced by java.lang.String.valueOf(boolean) is written
to the JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
b - The boolean to be printed

Throws:
java.io.IOException - If an error occured while writing

print(char)

public abstract void print(char c)

throws IOException

Print a character. The character is written to the JspWriter’s buffer or, if no buffer is used, directly to the
underlying writer.

javax.servlet.jsp JspWriter

print(int)

javax.servlet.jsp JspWriter 2-51

Parameters:
c - The char to be printed

Throws:
java.io.IOException - If an error occured while writing

print(int)

public abstract void print(int i)

throws IOException

Print an integer. The string produced by java.lang.String.valueOf(int) is written to the
JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
i - The int to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Integer.toString(int)

print(long)

public abstract void print(long l)

throws IOException

Print a long integer. The string produced by java.lang.String.valueOf(long) is written to the
JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
l - The long to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Long.toString(long)

print(float)

public abstract void print(float f)

throws IOException

Print a floating-point number. The string produced by java.lang.String.valueOf(float) is
written to the JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
f - The float to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Float.toString(float)

print(double)

public abstract void print(double d)

throws IOException

JspWriter javax.servlet.jsp

print(char[])

2-52 JavaServer Pages 2.1 Specification • May 2006

Print a double-precision floating-point number. The string produced by
java.lang.String.valueOf(double) is written to the JspWriter’s buffer or, if no buffer is used,
directly to the underlying writer.

Parameters:
d - The double to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Double.toString(double)

print(char[])

public abstract void print(char[] s)

throws IOException

Print an array of characters. The characters are written to the JspWriter’s buffer or, if no buffer is used,
directly to the underlying writer.

Parameters:
s - The array of chars to be printed

Throws:
java.lang.NullPointerException - If s is null

java.io.IOException - If an error occured while writing

print(String)

public abstract void print(java.lang.String s)

throws IOException

Print a string. If the argument is null then the string “null” is printed. Otherwise, the string’s characters
are written to the JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
s - The String to be printed

Throws:
java.io.IOException - If an error occured while writing

print(Object)

public abstract void print(java.lang.Object obj)

throws IOException

Print an object. The string produced by the java.lang.String.valueOf(Object) method is
written to the JspWriter’s buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
obj - The Object to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Object.toString()

javax.servlet.jsp JspWriter

println()

javax.servlet.jsp JspWriter 2-53

println()

public abstract void println()

throws IOException

Terminate the current line by writing the line separator string. The line separator string is defined by the
system property line.separator, and is not necessarily a single newline character ('\n').

Throws:
java.io.IOException - If an error occured while writing

println(boolean)

public abstract void println(boolean x)

throws IOException

Print a boolean value and then terminate the line. This method behaves as though it invokes
print(boolean)50 and then println()53.

Parameters:
x - the boolean to write

Throws:
java.io.IOException - If an error occured while writing

println(char)

public abstract void println(char x)

throws IOException

Print a character and then terminate the line. This method behaves as though it invokes print(char)50
and then println()53.

Parameters:
x - the char to write

Throws:
java.io.IOException - If an error occured while writing

println(int)

public abstract void println(int x)

throws IOException

Print an integer and then terminate the line. This method behaves as though it invokes print(int)51 and
then println()53.

Parameters:
x - the int to write

Throws:
java.io.IOException - If an error occured while writing

println(long)

public abstract void println(long x)

throws IOException

Print a long integer and then terminate the line. This method behaves as though it invokes
print(long)51 and then println()53.

JspWriter javax.servlet.jsp

println(float)

2-54 JavaServer Pages 2.1 Specification • May 2006

Parameters:
x - the long to write

Throws:
java.io.IOException - If an error occured while writing

println(float)

public abstract void println(float x)

throws IOException

Print a floating-point number and then terminate the line. This method behaves as though it invokes
print(float)51 and then println()53.

Parameters:
x - the float to write

Throws:
java.io.IOException - If an error occured while writing

println(double)

public abstract void println(double x)

throws IOException

Print a double-precision floating-point number and then terminate the line. This method behaves as though
it invokes print(double)51 and then println()53.

Parameters:
x - the double to write

Throws:
java.io.IOException - If an error occured while writing

println(char[])

public abstract void println(char[] x)

throws IOException

Print an array of characters and then terminate the line. This method behaves as though it invokes
print(char[]) and then println().

Parameters:
x - the char[] to write

Throws:
java.io.IOException - If an error occured while writing

println(String)

public abstract void println(java.lang.String x)

throws IOException

Print a String and then terminate the line. This method behaves as though it invokes print(String)52
and then println()53.

Parameters:
x - the String to write

javax.servlet.jsp JspWriter

println(Object)

javax.servlet.jsp JspWriter 2-55

Throws:
java.io.IOException - If an error occured while writing

println(Object)

public abstract void println(java.lang.Object x)

throws IOException

Print an Object and then terminate the line. This method behaves as though it invokes print(Object)52
and then println()53.

Parameters:
x - the Object to write

Throws:
java.io.IOException - If an error occured while writing

PageContext javax.servlet.jsp

println(Object)

2-56 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp

PageContext
Declaration
public abstract class PageContext extends JspContext29

java.lang.Object
|
+--javax.servlet.jsp.JspContext29

|
+--javax.servlet.jsp.PageContext

Description
 PageContext extends JspContext to provide useful context information for when JSP technology is used in a
Servlet environment.

A PageContext instance provides access to all the namespaces associated with a JSP page, provides access to
several page attributes, as well as a layer above the implementation details. Implicit objects are added to the
pageContext automatically.

The PageContext class is an abstract class, designed to be extended to provide implementation dependent
implementations thereof, by conformant JSP engine runtime environments. A PageContext instance is obtained
by a JSP implementation class by calling the JspFactory.getPageContext() method, and is released by calling
JspFactory.releasePageContext().

An example of how PageContext, JspFactory, and other classes can be used within a JSP Page Implementation
object is given elsewhere.

The PageContext provides a number of facilities to the page/component author and page implementor,
including:

• a single API to manage the various scoped namespaces

• a number of convenience API’s to access various public objects

• a mechanism to obtain the JspWriter for output

• a mechanism to manage session usage by the page

• a mechanism to expose page directive attributes to the scripting environment

• mechanisms to forward or include the current request to other active components in the application

• a mechanism to handle errorpage exception processing

Methods Intended for Container Generated Code

Some methods are intended to be used by the code generated by the container, not by code written by JSP page
authors, or JSP tag library authors.

The methods supporting lifecycle are initialize() and release()

The following methods enable the management of nested JspWriter streams to implement Tag Extensions:
pushBody()

Methods Intended for JSP authors

The following methods provide convenient access to implicit objects: getException(), getPage()
getRequest(), getResponse(), getSession(), getServletConfig() and
getServletContext().

javax.servlet.jsp PageContext

println(Object)

javax.servlet.jsp PageContext 2-57

The following methods provide support for forwarding, inclusion and error handling: forward(),
include(), and handlePageException().

Member Summary

Fields
static

java.lang.String
APPLICATION58

static int APPLICATION_SCOPE58
static

java.lang.String
CONFIG58

static
java.lang.String

EXCEPTION58

static
java.lang.String

OUT59

static
java.lang.String

PAGE59

static int PAGE_SCOPE59
static

java.lang.String
PAGECONTEXT59

static
java.lang.String

REQUEST59

static int REQUEST_SCOPE59
static

java.lang.String
RESPONSE59

static
java.lang.String

SESSION59

static int SESSION_SCOPE59

Constructors
PageContext()60

Methods
abstract void forward(java.lang.String relativeUrlPath)60

 ErrorData getErrorData()60
abstract

java.lang.Exception
getException()60

abstract
java.lang.Object

getPage()61

abstract
javax.servlet.ServletR

equest

getRequest()61

abstract
javax.servlet.ServletR

esponse

getResponse()61

abstract
javax.servlet.ServletC

onfig

getServletConfig()61

abstract
javax.servlet.ServletC

ontext

getServletContext()61

abstract
javax.servlet.http.Htt

pSession

getSession()61

abstract void handlePageException(java.lang.Exception e)61

PageContext javax.servlet.jsp

APPLICATION

2-58 JavaServer Pages 2.1 Specification • May 2006

Fields

APPLICATION

public static final java.lang.String APPLICATION

Name used to store ServletContext in PageContext name table.

APPLICATION_SCOPE

public static final int APPLICATION_SCOPE

Application scope: named reference remains available in the ServletContext until it is reclaimed.

CONFIG

public static final java.lang.String CONFIG

Name used to store ServletConfig in PageContext name table.

EXCEPTION

public static final java.lang.String EXCEPTION

abstract void handlePageException(java.lang.Throwable t)62
abstract void include(java.lang.String relativeUrlPath)62
abstract void include(java.lang.String relativeUrlPath, boolean flush)63
abstract void initialize(javax.servlet.Servlet servlet,

javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String
errorPageURL, boolean needsSession, int bufferSize, boolean
autoFlush)63

javax.servlet.jsp.tage
xt.BodyContent

pushBody()64

abstract void release()64

Inherited Member Summary

Methods inherited from class JspContext29

findAttribute(String)30, getAttribute(String)31, getAttribute(String, int)31,
getAttributeNamesInScope(int)31, getAttributesScope(String)32, getELContext()32,
getExpressionEvaluator()32, getOut()32, getVariableResolver()32, popBody()33,
pushBody(Writer)33, removeAttribute(String)33, removeAttribute(String, int)33,
setAttribute(String, Object)34, setAttribute(String, Object, int)34

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

javax.servlet.jsp PageContext

OUT

javax.servlet.jsp PageContext 2-59

Name used to store uncaught exception in ServletRequest attribute list and PageContext name table.

OUT

public static final java.lang.String OUT

Name used to store current JspWriter in PageContext name table.

PAGE

public static final java.lang.String PAGE

Name used to store the Servlet in this PageContext’s nametables.

PAGE_SCOPE

public static final int PAGE_SCOPE

Page scope: (this is the default) the named reference remains available in this PageContext until the return
from the current Servlet.service() invocation.

PAGECONTEXT

public static final java.lang.String PAGECONTEXT

Name used to store this PageContext in it’s own name table.

REQUEST

public static final java.lang.String REQUEST

Name used to store ServletRequest in PageContext name table.

REQUEST_SCOPE

public static final int REQUEST_SCOPE

Request scope: the named reference remains available from the ServletRequest associated with the Servlet
until the current request is completed.

RESPONSE

public static final java.lang.String RESPONSE

Name used to store ServletResponse in PageContext name table.

SESSION

public static final java.lang.String SESSION

Name used to store HttpSession in PageContext name table.

SESSION_SCOPE

public static final int SESSION_SCOPE

Session scope (only valid if this page participates in a session): the named reference remains available from
the HttpSession (if any) associated with the Servlet until the HttpSession is invalidated.

PageContext javax.servlet.jsp

PageContext()

2-60 JavaServer Pages 2.1 Specification • May 2006

Constructors

PageContext()

public PageContext()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

forward(String)

public abstract void forward(java.lang.String relativeUrlPath)

throws ServletException, IOException

 This method is used to re-direct, or “forward” the current ServletRequest and ServletResponse to another
active component in the application.

If the relativeUrlPath begins with a “/” then the URL specified is calculated relative to the DOCROOT of
the ServletContext for this JSP. If the path does not begin with a “/” then the URL specified is
calculated relative to the URL of the request that was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jspService(...) method
of a JSP.

Once this method has been called successfully, it is illegal for the calling Thread to attempt to modify
the ServletResponse object. Any such attempt to do so, shall result in undefined behavior.
Typically, callers immediately return from _jspService(...) after calling this method.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource as described above

Throws:
java.lang.IllegalStateException - if ServletResponse is not in a state where a
forward can be performed

javax.servlet.ServletException - if the page that was forwarded to throws a
ServletException

java.io.IOException - if an I/O error occurred while forwarding

getErrorData()

public javax.servlet.jsp.ErrorData22 getErrorData()

Provides convenient access to error information.

Returns: an ErrorData instance containing information about the error, as obtained from the request
attributes, as per the Servlet specification. If this is not an error page (that is, if the isErrorPage attribute
of the page directive is not set to “true”), the information is meaningless.

Since: JSP 2.0

getException()

public abstract java.lang.Exception getException()

javax.servlet.jsp PageContext

getPage()

javax.servlet.jsp PageContext 2-61

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage

getPage()

public abstract java.lang.Object getPage()

The current value of the page object (In a Servlet environment, this is an instance of javax.servlet.Servlet).

Returns: the Page implementation class instance associated with this PageContext

getRequest()

public abstract javax.servlet.ServletRequest getRequest()

The current value of the request object (a ServletRequest).

Returns: The ServletRequest for this PageContext

getResponse()

public abstract javax.servlet.ServletResponse getResponse()

The current value of the response object (a ServletResponse).

Returns: the ServletResponse for this PageContext

getServletConfig()

public abstract javax.servlet.ServletConfig getServletConfig()

The ServletConfig instance.

Returns: the ServletConfig for this PageContext

getServletContext()

public abstract javax.servlet.ServletContext getServletContext()

The ServletContext instance.

Returns: the ServletContext for this PageContext

getSession()

public abstract javax.servlet.http.HttpSession getSession()

The current value of the session object (an HttpSession).

Returns: the HttpSession for this PageContext or null

handlePageException(Exception)

public abstract void handlePageException(java.lang.Exception e)

throws ServletException, IOException

This method is intended to process an unhandled ’page’ level exception by forwarding the exception to the
specified error page for this JSP. If forwarding is not possible (for example because the response has already
been committed), an implementation dependent mechanism should be used to invoke the error page (e.g.
“including” the error page instead).

PageContext javax.servlet.jsp

handlePageException(Throwable)

2-62 JavaServer Pages 2.1 Specification • May 2006

If no error page is defined in the page, the exception should be rethrown so that the standard servlet error
handling takes over.

A JSP implementation class shall typically clean up any local state prior to invoking this and will return
immediately thereafter. It is illegal to generate any output to the client, or to modify any ServletResponse
state after invoking this call.

This method is kept for backwards compatiblity reasons. Newly generated code should use
PageContext.handlePageException(Throwable).

Parameters:
e - the exception to be handled

Throws:
javax.servlet.ServletException - if an error occurs while invoking the error page

java.io.IOException - if an I/O error occurred while invoking the error page

java.lang.NullPointerException - if the exception is null

See Also: handlePageException(Throwable)62

handlePageException(Throwable)

public abstract void handlePageException(java.lang.Throwable t)

throws ServletException, IOException

This method is intended to process an unhandled ’page’ level exception by forwarding the exception to the
specified error page for this JSP. If forwarding is not possible (for example because the response has already
been committed), an implementation dependent mechanism should be used to invoke the error page (e.g.
“including” the error page instead).

If no error page is defined in the page, the exception should be rethrown so that the standard servlet error
handling takes over.

This method is intended to process an unhandled “page” level exception by redirecting the exception to
either the specified error page for this JSP, or if none was specified, to perform some implementation
dependent action.

A JSP implementation class shall typically clean up any local state prior to invoking this and will return
immediately thereafter. It is illegal to generate any output to the client, or to modify any ServletResponse
state after invoking this call.

Parameters:
t - the throwable to be handled

Throws:
javax.servlet.ServletException - if an error occurs while invoking the error page

java.io.IOException - if an I/O error occurred while invoking the error page

java.lang.NullPointerException - if the exception is null

See Also: handlePageException(Exception)61

include(String)

public abstract void include(java.lang.String relativeUrlPath)

throws ServletException, IOException

javax.servlet.jsp PageContext

include(String, boolean)

javax.servlet.jsp PageContext 2-63

 Causes the resource specified to be processed as part of the current ServletRequest and ServletResponse
being processed by the calling Thread. The output of the target resources processing of the request is
written directly to the ServletResponse output stream.

The current JspWriter “out” for this JSP is flushed as a side-effect of this call, prior to processing the
include.

If the relativeUrlPath begins with a “/” then the URL specified is calculated relative to the DOCROOT of
the ServletContext for this JSP. If the path does not begin with a “/” then the URL specified is
calculated relative to the URL of the request that was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jspService(...) method
of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be included

Throws:
javax.servlet.ServletException - if the page that was forwarded to throws a
ServletException

java.io.IOException - if an I/O error occurred while forwarding

include(String, boolean)

public abstract void include(java.lang.String relativeUrlPath, boolean flush)

throws ServletException, IOException

 Causes the resource specified to be processed as part of the current ServletRequest and ServletResponse
being processed by the calling Thread. The output of the target resources processing of the request is
written directly to the current JspWriter returned by a call to getOut().

If flush is true, The current JspWriter “out” for this JSP is flushed as a side-effect of this call, prior to
processing the include. Otherwise, the JspWriter “out” is not flushed.

If the relativeUrlPath begins with a “/” then the URL specified is calculated relative to the DOCROOT of
the ServletContext for this JSP. If the path does not begin with a “/” then the URL specified is
calculated relative to the URL of the request that was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jspService(...) method
of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be included

flush - True if the JspWriter is to be flushed before the include, or false if not.

Throws:
javax.servlet.ServletException - if the page that was forwarded to throws a
ServletException

java.io.IOException - if an I/O error occurred while forwarding

Since: JSP 2.0

initialize(Servlet, ServletRequest, ServletResponse, String, boolean, int, boolean)

public abstract void initialize(javax.servlet.Servlet servlet,

javax.servlet.ServletRequest request,

javax.servlet.ServletResponse response, java.lang.String errorPageURL,

PageContext javax.servlet.jsp

pushBody()

2-64 JavaServer Pages 2.1 Specification • May 2006

boolean needsSession, int bufferSize, boolean autoFlush)

throws IOException, IllegalStateException, IllegalArgumentException

 The initialize method is called to initialize an uninitialized PageContext so that it may be used by a JSP
Implementation class to service an incoming request and response within it’s _jspService() method.

This method is typically called from JspFactory.getPageContext() in order to initialize state.

This method is required to create an initial JspWriter, and associate the “out” name in page scope with this
newly created object.

This method should not be used by page or tag library authors.

Parameters:
servlet - The Servlet that is associated with this PageContext

request - The currently pending request for this Servlet

response - The currently pending response for this Servlet

errorPageURL - The value of the errorpage attribute from the page directive or null

needsSession - The value of the session attribute from the page directive

bufferSize - The value of the buffer attribute from the page directive

autoFlush - The value of the autoflush attribute from the page directive

Throws:
java.io.IOException - during creation of JspWriter

java.lang.IllegalStateException - if out not correctly initialized

java.lang.IllegalArgumentException - If one of the given parameters is invalid

pushBody()

public javax.servlet.jsp.tagext.BodyContent88 pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and update the value of the “out”
attribute in the page scope attribute namespace of the PageContext.

Returns: the new BodyContent

release()

public abstract void release()

 This method shall “reset” the internal state of a PageContext, releasing all internal references, and
preparing the PageContext for potential reuse by a later invocation of initialize(). This method is typically
called from JspFactory.releasePageContext().

Subclasses shall envelope this method.

This method should not be used by page or tag library authors.

javax.servlet.jsp SkipPageException

release()

javax.servlet.jsp SkipPageException 2-65

javax.servlet.jsp

SkipPageException
Declaration
public class SkipPageException extends JspException37

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.servlet.jsp.JspException37

|
+--javax.servlet.jsp.SkipPageException

All Implemented Interfaces: java.io.Serializable

Description
Exception to indicate the calling page must cease evaluation. Thrown by a simple tag handler to indicate that the
remainder of the page must not be evaluated. The result is propagated back to the pagein the case where one tag
invokes another (as can be the case with tag files). The effect is similar to that of a Classic Tag Handler returning
Tag.SKIP_PAGE from doEndTag(). Jsp Fragments may also throw this exception. This exception should not be
thrown manually in a JSP page or tag file - the behavior is undefined. The exception is intended to be thrown
inside SimpleTag handlers and in JSP fragments.

Since: JSP 2.0

See Also: javax.servlet.jsp.tagext.SimpleTag.doTag()112,
javax.servlet.jsp.tagext.JspFragment.invoke(Writer)106,
javax.servlet.jsp.tagext.Tag.doEndTag()120

Member Summary

Constructors
SkipPageException()66
SkipPageException(java.lang.String message)66
SkipPageException(java.lang.String message,
java.lang.Throwable rootCause)66
SkipPageException(java.lang.Throwable rootCause)66

Inherited Member Summary

Methods inherited from interface JspException37

SkipPageException javax.servlet.jsp

SkipPageException()

2-66 JavaServer Pages 2.1 Specification • May 2006

Constructors

SkipPageException()

public SkipPageException()

Creates a SkipPageException with no message.

SkipPageException(String)

public SkipPageException(java.lang.String message)

Creates a SkipPageException with the provided message.

Parameters:
message - the detail message

SkipPageException(String, Throwable)

public SkipPageException(java.lang.String message, java.lang.Throwable rootCause)

Creates a SkipPageException with the provided message and root cause.

Parameters:
message - the detail message

rootCause - the originating cause of this exception

SkipPageException(Throwable)

public SkipPageException(java.lang.Throwable rootCause)

Creates a SkipPageException with the provided root cause.

Parameters:
rootCause - the originating cause of this exception

getRootCause()38

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

Inherited Member Summary

2-67

C H A P T E R JSP.13
Tag Extension API

This chapter describes the details of tag handlers and other tag extension
classes as well as methods that are available to access the Tag Library Descriptor
files. This complements a previous chapter that described the Tag Library Descrip-
tor files formats and their use in taglib directives.

This chapter includes content that is generated automatically from javadoc
embedded into the actual Java classes and interfaces. This allows the creation of a
single, authoritative, specification document.

TAG EXTENSION API2-68

JavaServer Pages 2.1 Specification

javax.servlet.jsp.tagext 2-69

Package

javax.servlet.jsp.tagext
Description
Classes and interfaces for the definition of JavaServer Pages Tag Libraries.

Custom actions can be used by JSP authors and authoring tools to simplify writing JSP pages. A custom action
can be either an empty or a non-empty action.

An empty tag has no body. There are two equivalent syntaxes, one with separate start and end tags, and one
where the start and end tags are combined. The two following examples are identical:

<x:foo att=“myObject”></foo>
<x:foo att=“myObject”/>

A non-empty tag has a start tag, a body, and an end tag. A prototypical example is of the form:

<x:foo att=“myObject” >
BODY

</x:foo/>
The JavaServer Pages(tm) (JSP) specification provides a portable mechanism for the description of tag libraries.

A JSP tag library contains

• A Tag Library Descriptor

• A number of Tag Files or Tag handler classes defining request-time behavior

• Additional classes and resources used at runtime

• Possibly some additional classes to provide extra translation information

This API is described in the following sections:

1. Classic Tag Handlers

2. Tag Handlers that want to access their Body Content

3. Dynamic Attributes

4. Annotated Tag Handler Management Example

5. Cooperating Actions

6. Simple Tag Handlers

7. JSP Fragments

8. Example Simple Tag Handler Scenario

9. Translation-time Classes

1. Classic Tag Handlers
This section introduces the notion of a tag handler and describes the classic types of tag handler.

JSP 2.0 introduces a new type of Tag Handler called a Simple Tag Handler, which is described in a later section.
The protocol for Simple Tag handlers is much more straightforward.

Tag Handler
A tag handler is a run-time, container-managed object that evaluates custom actions during the execution of a
JSP page. A tag handler supports a protocol that allows the JSP container to provide good integration of the
server-side actions within a JSP page.

javax.servlet.jsp.tagext

2-70 JavaServer Pages 2.1 Specification • May 2006

A tag handler is created initially using a zero argument constructor on its corresponding class; the method
java.beans.Beans.instantiate() is not used.

A tag handler has some properties that are exposed to the page as attributes on an action; these properties are
managed by the JSP container (via generated code). The setter methods used to set the properties are discovered
using the JavaBeans introspector machinery.

The protocol supported by a tag handler provides for passing of parameters, the evaluation and reevaluation of
the body of the action, and for getting access to objects and other tag handlers in the JSP page.

A tag handler instance is responsible for processing one request at a time. It is the responsability of the JSP
container to enforce this.

Additional translation time information associated with the action indicates the name of any scripting variables
it may introduce, their types and their scope. At specific moments, the JSP container will automatically
synchronize the javax.servlet.jsp.PageContext56 information with variables in the scripting
language so they can be made available directly through the scripting elements.

Properties
A tag handler has some properties. All tag handlers have a pageContext property for the JSP page where the tag
is located, and a parent property for the tag handler to the closest enclosing action. Specific tag handler classes
may have additional properties.

All attributes of a custom action must be JavaBeans component properties, although some properties may not be
exposed as attributes. The attributes that are visible to the JSP translator are exactly those listed in the Tag
Library Descriptor (TLD).

All properties of a tag handler instance exposed as attributes will be initialized by the container using the
appropriate setter methods before the instance can be used to perform the action methods. It is the responsibility
of the JSP container to invoke the appropriate setter methods to initialize these properties. It is the responsability
of user code, be it scriptlets, JavaBeans code, or code inside custom tags, to not invoke these setter methods, as
doing otherwise would interfere with the container knowledge.

The setter methods that should be used when assigning a value to an attribute of a custom action are determined
by using the JavaBeans introspector on the tag handler class, then use the setter method associated with the
property that has the same name as the attribute in question. An implication (unclear in the JavaBeans
specification) is that there is only one setter per property.

Unspecified attributes/properties should not be set (using a setter method).

Once properly set, all properties are expected to be persistent, so that if the JSP container ascertains that a
property has already been set on a given tag handler instance, it must not set it again.

The JSP container may reuse classic tag handler instances for multiple occurrences of the corresponding custom
action, in the same page or in different pages, but only if the same set of attributes are used for all occurrences.
If a tag handler is used for more than one occurence, the container must reset all attributes where the values
differ between the custom action occurrences. Attributes with the same value in all occurrences must not be
reset. If an attribute value is set as a request-time attribute value (using a scripting or an EL expression), the
container must reset the attribute between all reuses of the tag handler instance.

User code can access property information and access and modify tag handler internal state starting with the
first action method (doStartTag) up until the last action method (doEndTag or doFinally for tag handlers
implementing TryCatchFinally).

Tag Handler as a Container-Managed Object
Since a tag handler is a container managed object, the container needs to maintain its references; specifically,
user code should not keep references to a tag handler except between the start of the first action method

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-71

(doStartTag()) and the end of the last action method (doEndTag() or doFinally() for those tags that implement
TryCatchFinally).

The restrictions on references to tag handler objects and on modifying attribute properties gives the JSP
container substantial freedom in effectively managing tag handler objects to achieve different goals. For
example, a container may implementing different pooling strategies to minimize creation cost, or may hoist
setting of properties to reduce cost when a tag handler is inside another iterative tag.

Conversions
A tag handler implements an action; the JSP container must follow the type conversions described in Section
2.13.2 when assigning values to the attributes of an action.

Empty and Non-Empty Actions
An empty action has no body; it may use one of two syntaxes: either <foo/> or <foo></foo>. Since empty
actions have no body the methods related to body manipulation are not invoked. There is a mechanism in the
Tag Library Descriptor to indicate that a tag can only be used to write empty actions; when used, non-empty
actions using that tag will produce a translation error.

A non-empty action has a body.

The Tag Interface
A Tag handler that does not want to process its body can implement just the Tag interface. A tag handler may
not want to process its body because it is an empty tag or because the body is just to be “passed through”.

The Tag interface includes methods to provide page context information to the Tag Handler instance, methods
to handle the life-cycle of tag handlers, and two main methods for performing actions on a tag:
doStartTag() and doEndTag(). The method doStartTag() is invoked when encountering the start
tag and its return value indicates whether the body (if there is any) should be skipped, or evaluated and passed
through to the current response stream. The method doEndTag() is invoked when encountering the end tag;
its return value indicates whether the rest of the page should continue to be evaluated or not.

If an exception is encountered during the evaluation of the body of a tag, its doEndTag method will not be
evaluated. See the TryCatchFinally tag for methods that are guaranteed to be evaluated.

The IterationTag Interface
The IterationTag interface is used to repeatedly reevaluate the body of a custom action. The interface has one
method: doAfterBody() which is invoked after each evaluation of the body to determine whether to
reevaluate or not.

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be BodyTag.EVAL_BODY_TAG.
That constant value is still kept in JSP 1.2 (for full backwards compatibility) but, to improve clarity, a new name
is also available: IterationTag.EVAL_BODY_AGAIN. To stop iterating, the returned value should be 0, which
is Tag.SKIP_BODY.

The JspIdConsumer Interface
This interface indicates to the container that a tag handler wishes to be provided with a compiler generated ID
that is unique within the page.

The TagSupport Base Class
The TagSupport class is a base class that can be used when implementing the Tag or IterationTag interfaces.

javax.servlet.jsp.tagext

2-72 JavaServer Pages 2.1 Specification • May 2006

2. Tag Handlers that want Access to their Body Content
The evaluation of a body is delivered into a BodyContent object. This is then made available to tag handlers
that implement the BodyTag interface. The BodyTagSupport class provides a useful base class to simplify
writing these handlers.

If a Tag handler wants to have access to the content of its body then it must implement the BodyTag interface.
This interface extends IterationTag, provides two additional methods setBodyContent(BodyContent)
and doInitBody() and refers to an object of type BodyContent.

A BodyContent is a subclass of JspWriter that has a few additional methods to convert its contents into a
String, insert the contents into another JspWriter, to get a Reader into its contents, and to clear the contents. Its
semantics also assure that buffer size will never be exceeded.

The JSP page implementation will create a BodyContent if the doStartTag() method returns a
EVAL_BODY_BUFFERED. This object will be passed to doInitBody(); then the body of the tag will be
evaluated, and during that evaluation out will be bound to the BodyContent just passed to the BodyTag
handler. Then doAfterBody() will be evaluated. If that method returns SKIP_BODY, no more evaluations of the
body will be done; if the method returns EVAL_BODY_AGAIN, then the body will be evaluated, and
doAfterBody() will be invoked again.

The content of a BodyContent instance remains available until after the invocation of its associated doEndTag()
method.

A common use of the BodyContent is to extract its contents into a String and then use the String as a value for
some operation. Another common use is to take its contents and push it into the out Stream that was valid when
the start tag was encountered (that is available from the PageContext object passed to the handler in
setPageContext).

3. Dynamic Attributes
Any tag handler can optionally extend the DynamicAttributes interface to indicate that it supports
dynamic attributes. In addition to implementing the DynamicAttributes interface, tag handlers that
support dynamic attributes must declare that they do so in the Tag Library Descriptor.

The TLD is what ultimately determines whether a tag handler accepts dynamic attributes or not. If a tag handler
declares that it supports dynamic attributes in the TLD but it does not implement the DynamicAttributes
interface, the tag handler must be considered invalid by the container.

If the dynamic-attributes element for a tag being invoked contains the value “true”, the following requirements
apply:

• For each attribute specified in the tag invocation that does not have a corresponding attribute element in the
TLD for this tag, a call must be made to setDynamicAttribute(), passing in the namespace of the
attribute (or null if the attribute does not have a namespace or prefix), the name of the attribute without the
namespace prefix, and the final value of the attribute.

• Dynamic attributes must be considered to accept request-time expression values as well as deferred
expressions.

• Dynamic attributes must be treated as though they were of type java.lang.Object. If a
ValueExpression is passed as a dynamic attribute, the default value for the expected return type is
assumed to be java.lang.Object. If a MethodExpression is passed as a dynamic attribute, the
default method signature is assumed to be void method().

• Note that passing a String literal as a dynamic attribute will never be considered as a deferred expression.

• The JSP container must recognize dynamic attributes that are passed to the tag handler using the
<jsp:attribute> standard action.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-73

• If the setDynamicAttribute() method throws JspException, the doStartTag() or
doTag() method is not invoked for this tag, and the exception must be treated in the same manner as if it
came from a regular attribute setter method.

• For a JSP document in either standard or XML syntax, If a dynamic attribute has a prefix that doesn’t map
to a namespace, a translation error must occur. In standard syntax, only namespaces defined using taglib
directives are recognized.

In the following example, assume attributes a and b are declared using the attribute element in the TLD,
attributes d1 and d2 are not declared, and the dynamic-attributes element is set to “true”. The attributes are set
using the calls:

• setA(“1”),

• setDynamicAttribute(null, “d1”, “2”),

• setDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d2”,
“3”),

• setB(“4”),

• setDynamicAttribute(null, “d3”, “5”), and

• setDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d4”,
“6”).

<jsp:root xmlns:mytag=“http://www.foo.com/jsp/taglib/mytag.tld” version=“2.0”>
<mytag:invokeDynamic a=“1” d1=“2” mytag:d2=“3”>
<jsp:attribute name=“b”>4</jsp:attribute>
<jsp:attribute name=“d3”>5</jsp:attribute>
<jsp:attribute name=“mytag:d4”>6</jsp:attribute>

</mytag:invokeDynamic>
</jsp:root>

4. Annotated Tag Handler Management Example
Below is a somewhat complete example of the way one JSP container could choose to do some tag handler
management. There are many other strategies that could be followed, with different pay offs.

In this example, we are assuming that x:iterate is an iterative tag, while x:doit and x:foobar are simple tag. We
will also assume that x:iterate and x:foobar implement the TryCatchFinally interface, while x:doit does not.

<x:iterate src=“foo”>
<x:doit att1=“one” att2=“<%= 1 + 1 %>” />
<x:foobar />
<x:doit att1=“one” att2=“<%= 2 + 2 %>” />

</x:iterate>
<x:doit att1=“one” att2=“<%= 3 + 3 %>” />

The particular code shown below assumes there is some pool of tag handlers that are managed (details not
described, although pool managing is simpler when there are no optional attributes), and attemps to reuse tag
handlers if possible. The code also “hoists” setting of properties to reduce the cost when appropriate, e.g. inside
an iteration.

javax.servlet.jsp.tagext

2-74 JavaServer Pages 2.1 Specification • May 2006

boolean b1, b2;
IterationTag i; // for x:iterate
Tag d; // for x:doit
Tag d; // for x:foobar
page: // label to end of page...
// initialize iteration tag
i = get tag from pool or new();
i.setPageContext(pc);
i.setParent(null);
i.setSrc(“foo”);
// x:iterate implements TryCatchFinally
try {

if ((b1 = i.doStartTag()) == EVAL_BODY_INCLUDE) {
// initialize doit tag
// code has been moved out of the loop for show
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(i);
d.setAtt1(“one”);

loop:
while (1) do {

// I'm ignoring newlines...
// two invocations, fused together
// first invocation of x:doit
d.setAtt2(1+1);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error ...
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

// x:foobar invocation
f = get tag from pool or new();
f.setPageContext(pc);
f.setParent(i);
// x:foobar implements TryCatchFinally
try {

if ((b2 = f.doStartTag()) == EVAL_BODY_INCLUDE) {
// nothing

} else if (b2 != SKIP_BODY) {
// Q? protocol error

}
if ((b2 = f.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {
f.doCatch(t); // caught, may been rethrown!

} finally {
f.doFinally();

}
// put f back to pool

// second invocation of x:doit
d.setAtt2(2+2);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-75

} else if (b2 != EVAL_PAGE) {
// Q? protocol error

}
if ((b2 = i.doAfterBody()) == EVAL_BODY_AGAIN) {

break loop;
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}

// loop
}

} else if (b1 != SKIP_BODY) {
// Q? protocol error

}
// tail end of the IteratorTag ...
if ((b1 = i.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

// third invocation
// this tag handler could be reused from the previous ones.
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(null);
d.setAtt1(“one”);
d.setAtt2(3+3);
if ((b1 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b1 != SKIP_BODY) {

// Q? protocol error
}
if ((b1 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {
i.doCatch(t); // caught, may been rethrown!

} finally {
i.doFinally();

}

5. Cooperating Actions
Actions can cooperate with other actions and with scripting code in a number of ways.

PageContext
Often two actions in a JSP page will want to cooperate, perhaps by one action creating some server-side object
that needs to be accessed by another. One mechanism for doing this is by giving the object a name within the
JSP page; the first action will create the object and associate the name to it while the second action will use the
name to retrieve the object.

For example, in the following JSP segment the foo action might create a server-side object and give it the name
“myObject”. Then the bar action might access that server-side object and take some action.

<x:foo id=“myObject” />
<x:bar ref=“myObjet” />

In a JSP implementation, the mapping “name”->value is kept by the implicit object pageContext. This
object is passed around through the Tag handler instances so it can be used to communicate information: all it is
needed is to know the name under which the information is stored into the pageContext.

javax.servlet.jsp.tagext

2-76 JavaServer Pages 2.1 Specification • May 2006

The Runtime Stack
An alternative to explicit communication of information through a named object is implicit coordination based
on syntactic scoping.

For example, in the following JSP segment the foo action might create a server-side object; later the nested
bar action might access that server-side object. The object is not named within the pageContext: it is found
because the specific foo element is the closest enclosing instance of a known element type.

<foo>
<bar/>

</foo>
This functionality is supported through the TagSupport.findAncestorWithClass(Tag, Class),
which uses a reference to parent tag kept by each Tag instance, which effectively provides a run-time execution
stack.

6. Simple Tag Handlers
This section presents the API to implement Simple Tag Handlers. Simple Tag Handlers present a much simpler
invocation protocol than do Classic Tag Handlers.

The Tag Library Descriptor maps tag library declarations to their physical underlying implementations. A
Simple Tag Handler is represented in Java by a class which implements the SimpleTag interface.

Unlike classic tag handlers, the SimpleTag interface does not extend Tag. Instead of supporting
doStartTag() and doEndTag(), the SimpleTag interface provides a simple doTag() method, which
is called once and only once for any given tag invocation. All tag logic, iteration, body evaluations, etc. are to be
performed in this single method. Thus, simple tag handlers have the equivalent power of BodyTag, but with a
much simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container invokes the
setJspBody() method with a JspFragment object encapsulating the body of the tag. The tag handler
implementation can call invoke() on that fragment to evaluate the body. The SimpleTagSupport
convenience class provides getJspBody() and other useful methods to make this even easier.

Lifecycle of Simple Tag Handlers
This section describes the lifecycle of simple tag handlers, from creation to invocation. For all semantics left
unspecified by this section, the semantics default to that of a classic tag handler.

When a simple tag handler is invoked, the following steps occur (in order):

1. Simple tag handlers are created initially using a zero argument constructor on the corresponding
implementation class. Unlike classic tag handlers, this instance must never be pooled by the container. A
new instance must be created for each tag invocation.

2. The setJspContext() and setParent() methods are invoked on the tag handler. The
setParent() method need not be called if the value being passed in is null. In the case of tag files, a
JspContext wrapper is created so that the tag file can appear to have its own page scope. Calling
getJspContext() must return the wrapped JspContext.

3. The attributes specified as XML element attributes (if any) are evaluated next, in the order in which they are
declared, according to the following rules (referred to as “evaluating an XML element attribute” below).
The appropriate bean property setter is invoked for each. If no setter is defined for the specified attribute but
the tag accepts dynamic attributes, the setDynamicAttribute() method is invoked as the setter.

• If the attribute is a scripting expression (e.g. “<%= 1+1 %>” in JSP syntax, or “%= 1+1 %” in XML
syntax), the expression is evaluated, and the result is converted as per the rules in “Type Conversions”, and
passed to the setter.

• Otherwise, if the attribute contains any Expression Language expressions (e.g. “Hello ${name}”), the

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-77

expression is evaluated, and the result is converted and passed to the setter.

• Otherwise, the attribute value is taken verbatim, converted, and passed to the setter.

4. The value for each <jsp:attribute> element is evaluated, and the corresponding bean property setter methods
are invoked for each, in the order in which they appear in the body of the tag. If no setter is defined for the
specified attribute but the tag accepts dynamic attributes, the setDynamicAttribute() method is
invoked as the setter.

• Otherwise, if the attribute is not of type JspFragment, the container evaluates the body of the
<jsp:attribute> element. This evaluation can be done in a container-specific manner. Container
implementors should note that in the process of evaluating this body, other custom actions may be invoked.

• Otherwise, if the attribute is of type JspFragment, an instance of a JspFragment object is created and
passed in.

5. The value for the body of the tag is determined, and if a body exists the setJspBody() method is called
on the tag handler.

• If the tag is declared to have a body-content of “empty” or no body or an empty body is passed for
this invocation, then setJspBody() is not called.

• Otherwise, the body of the tag is either the body of the <jsp:body> element, or the body of the custom
action invocation if no <jsp:body> or <jsp:attribute> elements are present. In this case, an instance of a
JspFragment object is created as per the lifecycle described in the JSP Fragments section and it is
passed to the setter. If the tag is declared to have a body-content of “tagdependent” the
JspFragment must echo the body’s contents verbatim. Otherwise, if the tag is declared to have a body-
content of type “scriptless”, the JspFragment must evaluate the body’s contents as a JSP
scriptless body.

6. The doTag() method is invoked.

7. The implementation of doTag() performs its function, potentially calling other tag handlers (if the tag
handler is implemented as a tag file) and invoking fragments.

8. The doTag() method returns, and the tag handler instance is discarded. If SkipPageException is
thrown, the rest of the page is not evaluated and the request is completed. If this request was forwarded or
included from another page (or Servlet), only the current page evaluation stops.

9. For each tag scripting variable declared with scopes AT_BEGIN or AT_END, the appropriate scripting
variables and scoped attributes are declared, as with classic tag handlers.

7. JSP Fragments
JSP Fragments are represented in Java by an instance of the
javax.servlet.jsp.tagext.JspFragment abstract class. Pieces of JSP code are translated
into JSP fragments in the context of a tag invocation. JSP Fragments are created when providing the body of a
<jsp:attribute> standard action for an attribute that is defined as a fragment or of type JspFragment, or when
providing the body of a tag invocation handled by a Simple Tag Handler.

Before being passed to a tag handler, the JspFragment instance is associated with the JspContext of the
surrounding page in an implementation-dependent manner. In addition, it is associated with the parent Tag or
SimpleTag instance for collaboration purposes, so that when a custom action is invoked from within the
fragment, setParent() can be called with the appropriate value. The fragment implementation must keep
these associations for the duration of the tag invocation in which it is used.

The invoke() method executes the body and directs all output to either the passed in java.io.Writer or
the JspWriter returned by the getOut() method of the JspContext associated with the fragment.

javax.servlet.jsp.tagext

2-78 JavaServer Pages 2.1 Specification • May 2006

The implementation of each method can optionally throw a JspException, which must be handled by the
invoker. Note that tag library developers and page authors should not generate JspFragment
implementations manually.

The following sections specify the creation and invocation lifecycles of a JSP Fragment in detail, from the JSP
Container’s perspective.

Creation of a JSP Fragment
When a JSP fragment is created, the following steps occur (in order):

1. An instance of a class implementing the JspFragment abstract class is obtained (may either be created
or can optionally be cached) each time the tag is invoked. This instance must be configured to produce the
contents of the body of the fragment when invoked. If the fragment is defining the body of a <jsp:attribute>,
the fragment must evaluate the body each time it is invoked. Otherwise, if the fragment is defining the body
of a simple tag, the behavior of the fragment when invoked varies depending on the body-content
declared for the tag:

• If the body-content is “tagdependent”, then the fragment must echo the contents of the body
verbatim when invoked.

• If the body-content is “scriptless”, then the fragment must evaluate the body each time it is
invoked.

2. The JspFragment instance is passed a reference to the current JspContext. Whenever the fragment
invokes a tag handler, it must use this value when calling setJspContext().

3. The JspFragment instance is associated with an instance of the tag handler of the nearest enclosing tag
invocation, or with null if there is no enclosing tag. Whenever the fragment invokes a tag handler, the
fragment must use this value when calling setParent().

Invocation of a JSP Fragment
After a JSP fragment is created, it is passed to a tag handler for later invocation. JSP fragments can be invoked
either programmatically from a tag handler written in Java, or from a tag file using the <jsp:invoke> or
<jsp:doBody> standard action.

JSP fragments are passed to tag handlers using a bean property of type JspFragment. These fragments can
be invoked by calling the invoke() method in the JspFragment abstract class. Note that it is legal (and
possible) for a fragment to recursively invoke itself, indirectly.

The following steps are followed when invoking a JSP fragment:

1. The tag handler invoking the fragment is responsible for setting the values of all declared AT_BEGIN and
NESTED variables in the JspContext of the calling page/tag, before invoking the fragment. Note that
this is not always the same as the JspContext of the fragment being invoked, as fragments can be passed
from one tag to another. In the case of tag files, for each variable declared in scope AT_BEGIN or NESTED,
if a page scoped attribute exists with the provided name in the tag file, the JSP container must generate code
to create/update the page scoped attribute of the provided name in the calling page/tag. If a page scoped
attribute with the provided name does not exist in the calling page, and a page scoped attribute of the
provided name is present in the tag file, the scoped attribute is removed from the tag file’s page scope. See
the chapter on Tag Files for details.

2. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var attribute is specified, a
custom java.io.Writer is created that can expose the result of the invocation as a
java.lang.String object. If the varReader attribute is specified, a custom java.io.Writer
object is created that can expose the resulting invocation as a java.io.Reader object.

3. The invoke() method of the fragment is invoked, passing in an optional Writer.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-79

4. Before executing the body of the fragment, if a non-null value is provided for the writer parameter, then the
value of JspContext.getOut() and the implicit “out” object must be updated to send output to that
writer. To accomplish this, the container must call pushBody(writer) on the current
JspContext, where writer is the instance of java.io.Writer passed to the fragment upon
invocation.

5. The body of the fragment is then evaluated by executing the generated code. The body of the fragment may
execute other standard or custom actions. If a classic Custom Tag Handler is invoked and returns
SKIP_PAGE, or if a Simple Tag Handler is invoked and throws SkipPageException, the
JspFragment must throw SkipPageException to signal that the calling page is to be skipped.

6. Once the fragment has completed its evaluation, even if an exception is thrown, the value of
JspContext.getOut() must be restored via a call to popBody() on the current JspContext.

7. The fragment returns from invoke()

8. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var or varReader attribute is
specified, a scoped variable with a name equal to the value of the var or varReader attribute is created
(or modified) in the page scope, and the value is set to a java.lang.String or java.io.Reader
respectively that can produce the results of the fragment invocation.

9. The invoke() method can be called again, zero or more times. When the tag invocation defining the
fragment is complete, the tag must discard the fragment instance since it might be reused by the container.

8. Example Simple Tag Handler Scenario
The following non-normative example is intended to help solidify some of the concepts relating to Tag Files,
JSP Fragments and Simple Tag Handlers. In the first section, two sample input files are presented, a JSP
(my.jsp), and a simple tag handler implemented using a tag file (simpletag.tag). One possible output of the
translation process is presented in the second section.

Although short, the example shows all concepts, including the variable directive. In practice most uses of tags
will be much simpler, but probably longer.

The sample generated code is annotated with comments that point to lifecycle steps presented in various
sections. The notation is as follows:

• “Step T.x” = Annotated step x from “Lifecycle of Simple Tag Handlers” earlier in this Chapter.

• “Step C.x” = Annotated step x from “Creation of a JSP Fragment” earlier in this Chapter.

• “Step F.x” = Annotated step x from “Invocation of a JSP Fragment” earlier in this Chapter.

Sample Source Files
This section presents the sample source files in this scenario, from which the output files are generated.

javax.servlet.jsp.tagext

2-80 JavaServer Pages 2.1 Specification • May 2006

Original JSP (my.jsp)
<%@ taglib prefix=“my” tagdir=“/WEB-INF/tags” %>
<my:simpleTag x=“10”>

<jsp:attribute name=“y”>20</jsp:attribute>
<jsp:attribute name=“nonfragment”>

Nonfragment Template Text
</jsp:attribute>
<jsp:attribute name=“frag”>

Fragment Template Text ${var1}
</jsp:attribute>
<jsp:body>

Body of tag that defines an AT_BEGIN
scripting variable ${var1}.

</jsp:body>
</my:simpleTag>

Original Tag File (/WEB-INF/tags/simpletag.tag)
<%-- /WEB-INF/tags/simpletag.tag --%>
<%@ attribute name=“x” %>
<%@ attribute name=“y” %>
<%@ attribute name=“nonfragment” %>
<%@ attribute name=“frag” fragment=“true” %>
<%@ variable name-given=“var1” scope=“AT_BEGIN” %>
<%@ taglib prefix=“c” uri=“http://java.sun.com/jsp/jstl/core” %>
Some template text.
<c:set var=“var1” value=“${x+y}”/>
<jsp:invoke fragment=“frag” varReader=“var1”/>
Invoke the body:
<jsp:doBody/>

Sample Generated Files
This section presents sample output files that might be generated by a JSP compiler, from the source files
presented in the previous section.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-81

Helper class for JspFragment (JspFragmentBase.java)
public abstract class JspFragmentBase

implements javax.servlet.jsp.tagext.JspFragment
{

protected javax.servlet.jsp.JspContext jspContext;
protected javax.servlet.jsp.tagext.JspTag parentTag;
public void JspFragmentBase(

javax.servlet.jsp.JspContext jspContext,
javax.servlet.jsp.tagext.JspTag parentTag)

{
this.jspContext = jspContext;
this.parentTag = parentTag;

}
}

Relevant Portion of JSP Service Method
// Step T.1 - Initial creation
MySimpleTag _jsp_mySimpleTag = new MySimpleTag();
// Step T.2 - Set page context and parent (since parent is null,
// no need to call setParent() in this case)
_jsp_mySimpleTag.setJspContext(jspContext);
// Step T.3 - XML element attributes evaluated and set
_jsp.mySimpleTag.setX(“10”);
// Step T.4 - <jsp:attribute> elements evaluated and set
// - parameter y
// (using PageContext.pushBody() is one possible implementation -
// one limitation is that this code will only work for Servlet-based code).
out = ((PageContext)jspContext).pushBody();
out.write(“20”);
_jsp_mySimpleTag.setY(

((javax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
// - parameter nonfragment
// (using PageContext.pushBody() is one possible implementation -
// one limitation is that this code will only work for Servlet-based code).
// Note that trim is enabled by default, else we would have “\n Non...”
out = ((PageContext)jspContext).pushBody();
out.write(“Nonfragment Template Text”);
_jsp_mySimpleTag.setNonfragment(

((javax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
// - parameter frag
_jsp_mySimpleTag.setFrag(

// Step C.1 - New instance of fragment created
// Step C.2 - Store jspContext
// Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {

public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;

// Step F.1-F.3 done in tag file (see following example)
// Step F.4 - If writer provided, push body:
if(out == null) {
out = this.jspContext.getOut();
}
else {
out = this.jspContext.pushBody(writer);
}
// Step F.5 - Evaluate body of fragment:

try {
out.write(“Fragment Template Text ”);
out.write(jspContext.getExpressionEvaluator().evaluate(

“${var1}”,
java.lang.String.class,
vResolver, fMapper, “my”));
}
finally {

// Step F.6 - Restore value of JspContext.getOut()

javax.servlet.jsp.tagext

2-82 JavaServer Pages 2.1 Specification • May 2006

if(writer != null) {
this.jspContext.popBody();

}
}
// Step F.7-F.9 done in tag file (see following example)

}
});

// Step T.5 - Determine and set body of the tag
// - body of tag
_jsp_mySimpleTag.setJspBody(

// Step C.1 - New instance of fragment created
// Step C.2 - Store jspContext
// Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {

public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;

// Step F.1-F.3 done in tag file (see following example)
// Step F.4 - If writer provided, push body:
if(writer == null) {
out = this.jspContext.getOut();
}
else {
out = this.jspContext.pushBody(writer);
}
// Step F.5 - Evaluate body of fragment:

try {
out.write(

“Body of tag that defines an AT_BEGIN\n” +
“ scripting variable ”);

out.write(jspContext.getExpressionEvaluator().evaluate(
“${var1}”,
java.lang.String.class,
vResolver, fMapper, “my”));

out.write(“.\n”);
}
finally {

// Step F.6 - Restore value of JspContext.getOut()
if(writer != null) {

this.jspContext.popBody();
}

}
// Step F.7-F.9 done in tag file (see following example)

}
});

// Step T.6 - Inovke doTag
// Step T.7 occurs in the tag file (see following example)
// Step T.8 - doTag returns - page will catch SkipPageException.
_jsp_mySimpleTag.doTag();
// Step T.9 - Declare AT_BEGIN and AT_END scripting variables
String var1 = (String)jspContext.findAttribute(“var1”);

Generated Simple Tag Handler (MySimpleTag.java)
public class MySimpleTag

extends javax.servlet.jsp.tagext.SimpleTagSupport
{

// Attributes:
private String x;
private String y;
private String nonfragment;
private javax.servlet.jsp.tagext.JspFragment frag;
// Setters and getters for attributes:
public void setX(Stirng x) {

this.x = x;
}
public String getX() {

return this.x;
}

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-83

public void setY(String y) {
this.y = y;

}
public String getY() {

return this.y;
}
public void setNonfragment(String nonfragment) {

this.nonfragment = nonfragment;
}
public String getNonfragment() {

return this.nonfragment;
}
public void setFrag(javax.servlet.jsp.tagext.JspFragment frag) {

this.frag = frag;
}
public javax.servlet.jsp.tagext.JspFragment getFrag() {

return this.frag;
}
protected JspContext jspContext;
public void setJspContext(JspContext ctx) {
super.setJspContext(ctx);
// Step T.2 - A JspContext wrapper is created.
// (Implementation of wrapper not shown).
this.jspContext = new utils.JspContextWrapper(ctx);
}
public JspContext getJspContext() {
// Step T.2 - Calling getJspContext() must return the
// wrapped JspContext.
return this.jspContext;
}
public void doTag() throws JspException {
java.lang.Object jspValue;
JspContext jspContext = getJspContext();
JspContext _jsp_parentContext =

SimpleTagSupport.this.getJspContext();
try {

javax.servlet.jsp.JspWriter out = jspContext.getOut();
// Create page-scope attributes for each tag attribute:
this.jspContext.setAttribute(“x”, getX());
this.jspContext.setAttribute(“y”, getY());
this.jspContext.setAttribute(“nonfragment”, getNonfragment());
this.jspContext.setAttribute(“frag”, getFrag());
// Synchronize AT_BEGIN variables from calling page
if((jspValue = _jsp_parentContext.getAttribute(

“var1”)) != null)
{
jspContext.setAttribute(“var1”, value);
}
else {
jspContext.removeAttribute(“var1”,

JspContext.PAGE_SCOPE);
}
// Tag template text:
out.write(“\n\n\n\n\n\n\n\nSome template text.\n”);
// Invoke c:set - recognized tag handler from JSTL:
jspContext.setAttribute(“var1”,
jspContext.getExpressionEvaluator().evaluate(

“${x+y}”,
java.lang.String.class,
jspContext,
prefixMap, functionMap, “my”));

// Invoke the “frag” fragment:
// Step F.1 - Set values of AT_BEGIN and NESTED variables
// in calling page context.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {
_jsp_parentContext.setAttribute(“var1”, value);
}
else {

javax.servlet.jsp.tagext

2-84 JavaServer Pages 2.1 Specification • May 2006

_jsp_parentContext.removeAttribute(“var1”,
JspContext.PAGE_SCOPE);

}
// Step F.2 - varReader is specified, generate a writer.
java.io.Writer _jsp_sout = new java.io.StringWriter();
// Step F.3 - Invoke fragment with writer
getFrag().invoke(_jsp_sout);
// Step F.4 - F.6 occur in the fragment (see above)
// Step F.7 - fragment returns
// Step F.8 - varReader specified, so save to var
jspContext.setAttribute(
“var1”, new StringReader(_jsp_sout.toString()));
// Step F.9 - Done!
out.write(“\n\nInvoke the body:\n”);
// Invoke the body of the tag:
// Step F.1 - Set values of AT_BEGIN and NESTED variables
// in calling page context.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {
_jsp_parentContext.setAttribute(“var1”, value);
}
else {
_jsp_parentContext.removeAttribute(“var1”,

JspContext.PAGE_SCOPE);
}
// Step F.2 - varReader is not specified - does not apply.
try {
// Step F.3 - Invoke body, passing optional writer
getJspBody().invoke(null);
}
finally {
// Steps F.4 - F.6 occur in the fragment (see above)
// Step F.7 - fragment returns
}
// Step F.8 does not apply.
// Step F.9 - Done!

}
finally {

// Tag handlers generate code to synchronize AT_BEGIN with
// calling page, regardless of whether an error occurs.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {
_jsp_parentContext.setAttribute(“var1”, value);
}
else {
_jsp_parentContext.removeAttribute(“var1”,

JspContext.PAGE_SCOPE);
}

}
}

}

9. Translation-time Classes
The following classes are used at translation time.

Tag mapping, Tag name
A taglib directive introduces a tag library and associates a prefix to it. The TLD associated with the library
associates Tag handler classes (plus other information) with tag names. This information is used to associate a
Tag class, a prefix, and a name with each custom action element appearing in a JSP page.

At execution time the implementation of a JSP page will use an available Tag instance with the appropriate
property settings and then follow the protocol described by the interfaces Tag, IterationTag, BodyTag,
SimpleTag, and TryCatchFinally. The implementation guarantees that all tag handler instances are initialized
and all are released, but the implementation can assume that previous settings are preserved by a tag handler, to
reduce run-time costs.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-85

Scripting Variables
JSP supports scripting variables that can be declared within a scriptlet and can be used in another. JSP actions
also can be used to define scripting variables so they can used in scripting elements, or in other actions. This is
very useful in some cases; for example, the jsp:useBean standard action may define an object which can
later be used through a scripting variable.

In some cases the information on scripting variables can be described directly into the TLD using elements. A
special case is typical interpretation of the “id” attribute. In other cases the logic that decides whether an action
instance will define a scripting variable may be quite complex and the name of a TagExtraInfo class is
instead given in the TLD. The getVariableInfo method of this class is used at translation time to obtain
information on each variable that will be created at request time when this action is executed. The method is
passed a TagData instance that contains the translation-time attribute values.

Validation
The TLD file contains several pieces of information that is used to do syntactic validation at translation-time. It
also contains two extensible validation mechanisms: a TagLibraryValidator class can be used to validate
a complete JSP page, and a TagExtraInfo class can be used to validate a specific action. In some cases,
additional request-time validation will be done dynamically within the methods in the Tag instance. If an error
is discovered, an instance of JspTagException can be thrown. If uncaught, this object will invoke the
errorpage mechanism of JSP.

The TagLibraryValidator is an addition to the JSP 1.2 specification and is very open ended, being strictly more
powerful than the TagExtraInfo mechanism. A JSP page is presented via the PageData object, which abstracts
the XML view of the JSP page.

A PageData instance will provides an InputStream (read-only) on the page. Later specifications may add other
views on the page (DOM, SAX, JDOM are all candidates), for now these views can be generated from the
InputStream and perhaps can be cached for improved performance (recall the view of the page is just read-
only).

As of JSP 2.0, the JSP container must support a jsp:id attribute to provide higher quality validation errors. The
container will track the JSP pages as passed to the container, and will assign to each element a unique “id”,
which is passed as the value of the jsp:id attribute. Each XML element in the XML view will be extended with
this attribute. The TagLibraryValidator can use the attribute in one or more ValidationMessage objects. The
container then, in turn, can use these values to provide more precise information on the location of an error.

The prefix for the id attribute need not be “jsp” but it must map to the namespace http://
java.sun.com/JSP/Page. In the case where the user has redefined the jsp prefix, an alternative prefix
must be used by the container.

Validation Details
In detail, validation is done as follows:

First, the JSP page is parsed using the information in the TLD. At this stage valid mandatory and optional
attributes are checked.

Second, for each unique tag library in the page as determined by the tag library URI, and in the lexical order in
which they appear, their associated validator class (if any) is invoked. This involves several substeps.

The first substep is to obtain an initialized validator instance by either:

• construct a new instance and invoke setInitParameters() on it, or

• obtain an existing instance that is not being used, invoke release() on it, and then invoke setInitParameters()
on it, or

• locate an existing instance that is not being used on which the desired setInitParameters() has already been
invoked

javax.servlet.jsp.tagext

2-86 JavaServer Pages 2.1 Specification • May 2006

The class name is as indicated in the <validator-class> element, and the Map passed through setInitParameters()
is as described in the <init-params> element. All TagLibraryValidator classes are supposed to keep their
initParameters until new ones are set, or until release() is invoked on them.

The second substep is to perform the actual validation. This is done by invoking the validate() method with a
prefix, uri, and PageData that correspond to the taglib directive instance being validated and the PageData
representing the page. In the case where a single URI is mapped to more than one prefix, the prefix of the first
URI must be used.

The last substep is to invoke the release() method on the validator tag when it is no longer needed. This method
releases all resources.

Finally, after checking all the tag library validator classes, the TagExtraInfo classes for all tags will be consulted
by invoking their validate method. The order of invocation of this methods is undefined.

Class Summary

Interfaces

BodyTag91 The BodyTag interface extends IterationTag by defining additional methods that let a
tag handler manipulate the content of evaluating its body.

DynamicAttributes99 For a tag to declare that it accepts dynamic attributes, it must implement this interface.

IterationTag102 The IterationTag interface extends Tag by defining one additional method that controls
the reevaluation of its body.

JspIdConsumer107 This interface indicates to the container that a tag handler wishes to be provided with a
compiler generated ID.

JspTag108 Serves as a base class for Tag and SimpleTag.

SimpleTag111 Interface for defining Simple Tag Handlers.

Tag118 The interface of a classic tag handler that does not want to manipulate its body.

TryCatchFinally161 The auxiliary interface of a Tag, IterationTag or BodyTag tag handler that wants
additional hooks for managing resources.

Classes

BodyContent88 An encapsulation of the evaluation of the body of an action so it is available to a tag
handler.

BodyTagSupport95 A base class for defining tag handlers implementing BodyTag.

FunctionInfo100 Information for a function in a Tag Library.

JspFragment105 Encapsulates a portion of JSP code in an object that can be invoked as many times as
needed.

PageData109 Translation-time information on a JSP page.

SimpleTagSupport114 A base class for defining tag handlers implementing SimpleTag.

TagAdapter123 Wraps any SimpleTag and exposes it using a Tag interface.

TagAttributeInfo126 Information on the attributes of a Tag, available at translation time.

TagData131 The (translation-time only) attribute/value information for a tag instance.

javax.servlet.jsp.tagext

javax.servlet.jsp.tagext 2-87

TagExtraInfo134 Optional class provided by the tag library author to describe additional translation-time
information not described in the TLD.

TagFileInfo137 Tag information for a tag file in a Tag Library; This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.

TagInfo139 Tag information for a tag in a Tag Library; This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.

TagLibraryInfo146 Translation-time information associated with a taglib directive, and its underlying TLD
file.

TagLibraryValidator151 Translation-time validator class for a JSP page.

TagSupport154 A base class for defining new tag handlers implementing Tag.

TagVariableInfo159 Variable information for a tag in a Tag Library; This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.

ValidationMessage163 A validation message from either TagLibraryValidator or TagExtraInfo.

VariableInfo165 Information on the scripting variables that are created/modified by a tag (at run-time).

Class Summary

BodyContent javax.servlet.jsp.tagext

2-88 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

BodyContent
Declaration
public abstract class BodyContent extends javax.servlet.jsp.JspWriter46

java.lang.Object
|
+--java.io.Writer

|
+--javax.servlet.jsp.JspWriter46

|
+--javax.servlet.jsp.tagext.BodyContent

All Implemented Interfaces: java.lang.Appendable, java.io.Closeable,
java.io.Flushable

Description
An encapsulation of the evaluation of the body of an action so it is available to a tag handler. BodyContent is a
subclass of JspWriter.

Note that the content of BodyContent is the result of evaluation, so it will not contain actions and the like, but
the result of their invocation.

BodyContent has methods to convert its contents into a String, to read its contents, and to clear the contents.

The buffer size of a BodyContent object is unbounded. A BodyContent object cannot be in autoFlush mode. It is
not possible to invoke flush on a BodyContent object, as there is no backing stream.

Instances of BodyContent are created by invoking the pushBody and popBody methods of the PageContext
class. A BodyContent is enclosed within another JspWriter (maybe another BodyContent object) following the
structure of their associated actions.

A BodyContent is made available to a BodyTag through a setBodyContent() call. The tag handler can use the
object until after the call to doEndTag().

Member Summary

Constructors
protected BodyContent(javax.servlet.jsp.JspWriter e)89

Methods
 void clearBody()89
 void flush()89

javax.servlet.jsp.JspW
riter

getEnclosingWriter()90

abstract
java.io.Reader

getReader()90

abstract
java.lang.String

getString()90

abstract void writeOut(java.io.Writer out)90

javax.servlet.jsp.tagext BodyContent

BodyContent(JspWriter)

javax.servlet.jsp.tagext BodyContent 2-89

Constructors

BodyContent(JspWriter)

protected BodyContent(javax.servlet.jsp.JspWriter46 e)

Protected constructor. Unbounded buffer, no autoflushing.

Parameters:
e - the enclosing JspWriter

Methods

clearBody()

public void clearBody()

Clear the body without throwing any exceptions.

flush()

public void flush()

throws IOException

Redefined flush() so it is not legal.

Inherited Member Summary

Fields inherited from class JspWriter46

autoFlush48, bufferSize48, DEFAULT_BUFFER48, NO_BUFFER48, UNBOUNDED_BUFFER48

Fields inherited from class Writer

lock

Methods inherited from class JspWriter46

clear()49, clearBuffer()49, close()49, getBufferSize()50, getRemaining()50,
isAutoFlush()50, newLine()50, print(boolean)50, print(char)50, print(char[])52,
print(double)51, print(float)51, print(int)51, print(long)51, print(Object)52,
print(String)52, println()53, println(boolean)53, println(char)53, println(char[])54,
println(double)54, println(float)54, println(int)53, println(long)53,
println(Object)55, println(String)54

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Methods inherited from class Writer

append(char), append(CharSequence), append(CharSequence, int, int), write(char[]),
write(char[], int, int), write(int), write(String), write(String, int, int)

BodyContent javax.servlet.jsp.tagext

getEnclosingWriter()

2-90 JavaServer Pages 2.1 Specification • May 2006

It is not valid to flush a BodyContent because there is no backing stream behind it.

Overrides: flush49 in class JspWriter46

Throws:
java.io.IOException - always thrown

getEnclosingWriter()

public javax.servlet.jsp.JspWriter46 getEnclosingWriter()

Get the enclosing JspWriter.

Returns: the enclosing JspWriter passed at construction time

getReader()

public abstract java.io.Reader getReader()

Return the value of this BodyContent as a Reader.

Returns: the value of this BodyContent as a Reader

getString()

public abstract java.lang.String getString()

Return the value of the BodyContent as a String.

Returns: the value of the BodyContent as a String

writeOut(Writer)

public abstract void writeOut(java.io.Writer out)

throws IOException

Write the contents of this BodyContent into a Writer. Subclasses may optimize common invocation
patterns.

Parameters:
out - The writer into which to place the contents of this body evaluation

Throws:
java.io.IOException - if an I/O error occurred while writing the contents of this BodyContent
to the given Writer

javax.servlet.jsp.tagext BodyTag

writeOut(Writer)

javax.servlet.jsp.tagext BodyTag 2-91

javax.servlet.jsp.tagext

BodyTag
Declaration
public interface BodyTag extends IterationTag102

All Superinterfaces: IterationTag102, JspTag108, Tag118

All Known Implementing Classes: BodyTagSupport95

Description
The BodyTag interface extends IterationTag by defining additional methods that let a tag handler manipulate the
content of evaluating its body.

It is the responsibility of the tag handler to manipulate the body content. For example the tag handler may take
the body content, convert it into a String using the bodyContent.getString method and then use it. Or the tag
handler may take the body content and write it out into its enclosing JspWriter using the bodyContent.writeOut
method.

A tag handler that implements BodyTag is treated as one that implements IterationTag, except that the
doStartTag method can return SKIP_BODY, EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED.

If EVAL_BODY_INCLUDE is returned, then evaluation happens as in IterationTag.

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be created (by code generated by the
JSP compiler) to capture the body evaluation. The code generated by the JSP compiler obtains the BodyContent
object by calling the pushBody method of the current pageContext, which additionally has the effect of saving
the previous out value. The page compiler returns this object by calling the popBody method of the PageContext
class; the call also restores the value of out.

The interface provides one new property with a setter method and one new action method.

Properties

There is a new property: bodyContent, to contain the BodyContent object, where the JSP Page implementation
object will place the evaluation (and reevaluation, if appropriate) of the body. The setter method
(setBodyContent) will only be invoked if doStartTag() returns EVAL_BODY_BUFFERED and the
corresponding action element does not have an empty body.

Methods

In addition to the setter method for the bodyContent property, there is a new action method: doInitBody(),
which is invoked right after setBodyContent() and before the body evaluation. This method is only invoked if
doStartTag() returns EVAL_BODY_BUFFERED.

Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that are thrown during the
computation of doStartTag(), setBodyContent(), doInitBody(), BODY, doAfterBody() interrupt the execution
sequence and are propagated up the stack, unless the tag handler implements the TryCatchFinally interface; see
that interface for details.

BodyTag javax.servlet.jsp.tagext

writeOut(Writer)

2-92 JavaServer Pages 2.1 Specification • May 2006

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an empty element body, by an
<body-content> entry of “empty”, then the doStartTag() method must return SKIP_BODY. Otherwise, the
doStartTag() method may return SKIP_BODY, EVAL_BODY_INCLUDE, or EVAL_BODY_BUFFERED.

Note that which methods are invoked after the doStartTag() depends on both the return value and on if the
custom action element is empty or not in the JSP page, not how it’s declared in the TLD.

If SKIP_BODY is returned the body is not evaluated, and doEndTag() is invoked.

If EVAL_BODY_INCLUDE is returned, and the custom action element is not empty, setBodyContent() is not
invoked, doInitBody() is not invoked, the body is evaluated and “passed through” to the current out,
doAfterBody() is invoked and then, after zero or more iterations, doEndTag() is invoked. If the custom action
element is empty, only doStart() and doEndTag() are invoked.

If EVAL_BODY_BUFFERED is returned, and the custom action element is not empty, setBodyContent() is
invoked, doInitBody() is invoked, the body is evaluated, doAfterBody() is invoked, and then, after zero or more
iterations, doEndTag() is invoked. If the custom action element is empty, only doStart() and doEndTag() are
invoked.

javax.servlet.jsp.tagext BodyTag

EVAL_BODY_BUFFERED

javax.servlet.jsp.tagext BodyTag 2-93

Fields

EVAL_BODY_BUFFERED

public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the body of this tag. Returned from
doStartTag when it implements BodyTag. This is an illegal return value for doStartTag when the class does
not implement BodyTag.

EVAL_BODY_TAG

public static final int EVAL_BODY_TAG

Deprecated. As of Java JSP API 1.2, use BodyTag.EVAL_BODY_BUFFERED or
IterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same value as EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN.
This name has been marked as deprecated to encourage the use of the two different terms, which are much
more descriptive.

Member Summary

Fields
static int EVAL_BODY_BUFFERED93
static int EVAL_BODY_TAG93

Methods
 void doInitBody()94
 void setBodyContent(BodyContent b)94

Inherited Member Summary

Fields inherited from interface IterationTag102

EVAL_BODY_AGAIN104

Fields inherited from interface Tag118

EVAL_BODY_INCLUDE120, EVAL_PAGE120, SKIP_BODY120, SKIP_PAGE120

Methods inherited from interface IterationTag102

doAfterBody()104

Methods inherited from interface Tag118

doEndTag()120, doStartTag()121, getParent()121, release()122,
setPageContext(PageContext)122, setParent(Tag)122

BodyTag javax.servlet.jsp.tagext

doInitBody()

2-94 JavaServer Pages 2.1 Specification • May 2006

Methods

doInitBody()

public void doInitBody()

throws JspException

Prepare for evaluation of the body. This method is invoked by the JSP page implementation object after
setBodyContent and before the first time the body is to be evaluated. This method will not be invoked for
empty tags or for non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

The JSP container will resynchronize the values of any AT_BEGIN and NESTED variables (defined by the
associated TagExtraInfo or TLD) after the invocation of doInitBody().

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: IterationTag.doAfterBody()104

setBodyContent(BodyContent)

public void setBodyContent(javax.servlet.jsp.tagext.BodyContent88 b)

Set the bodyContent property. This method is invoked by the JSP page implementation object at most once
per action invocation. This method will be invoked before doInitBody. This method will not be invoked for
empty tags or for non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

When setBodyContent is invoked, the value of the implicit object out has already been changed in the
pageContext object. The BodyContent object passed will have not data on it but may have been reused (and
cleared) from some previous invocation.

The BodyContent object is available and with the appropriate content until after the invocation of the
doEndTag method, at which case it may be reused.

Parameters:
b - the BodyContent

See Also: doInitBody()94, IterationTag.doAfterBody()104

javax.servlet.jsp.tagext BodyTagSupport

setBodyContent(BodyContent)

javax.servlet.jsp.tagext BodyTagSupport 2-95

javax.servlet.jsp.tagext

BodyTagSupport
Declaration
public class BodyTagSupport extends TagSupport154 implements BodyTag91

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagSupport154

|
+--javax.servlet.jsp.tagext.BodyTagSupport

All Implemented Interfaces: BodyTag91, IterationTag102, JspTag108,
java.io.Serializable, Tag118

Description
A base class for defining tag handlers implementing BodyTag.

The BodyTagSupport class implements the BodyTag interface and adds additional convenience methods
including getter methods for the bodyContent property and methods to get at the previous out JspWriter.

Many tag handlers will extend BodyTagSupport and only redefine a few methods.

Member Summary

Fields
protected BodyContent bodyContent96

Constructors
BodyTagSupport()96

Methods
 int doAfterBody()96
 int doEndTag()97
 void doInitBody()97
 int doStartTag()97

 BodyContent getBodyContent()98

javax.servlet.jsp.JspW
riter

getPreviousOut()98

 void release()98
 void setBodyContent(BodyContent b)98

Inherited Member Summary

Fields inherited from interface BodyTag91

EVAL_BODY_BUFFERED93, EVAL_BODY_TAG93

BodyTagSupport javax.servlet.jsp.tagext

bodyContent

2-96 JavaServer Pages 2.1 Specification • May 2006

Fields

bodyContent

protected javax.servlet.jsp.tagext.BodyContent88 bodyContent

The current BodyContent for this BodyTag.

Constructors

BodyTagSupport()

public BodyTagSupport()

Default constructor, all subclasses are required to only define a public constructor with the same signature,
and to call the superclass constructor. This constructor is called by the code generated by the JSP translator.

Methods

doAfterBody()

public int doAfterBody()

throws JspException

After the body evaluation: do not reevaluate and continue with the page. By default nothing is done with the
bodyContent data (if any).

Fields inherited from interface IterationTag102

EVAL_BODY_AGAIN104

Fields inherited from interface Tag118

EVAL_BODY_INCLUDE120, EVAL_PAGE120, SKIP_BODY120, SKIP_PAGE120

Fields inherited from class TagSupport154

id155, pageContext155

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Methods inherited from interface Tag118

getParent()121, setPageContext(PageContext)122, setParent(Tag)122

Methods inherited from class TagSupport154

findAncestorWithClass(Tag, Class)156, getId()157, getParent()157, getValue(String)157,
getValues()157, removeValue(String)157, setId(String)158,
setPageContext(PageContext)158, setParent(Tag)158, setValue(String, Object)158

Inherited Member Summary

javax.servlet.jsp.tagext BodyTagSupport

doEndTag()

javax.servlet.jsp.tagext BodyTagSupport 2-97

Specified By: doAfterBody104 in interface IterationTag102

Overrides: doAfterBody155 in class TagSupport154

Returns: SKIP_BODY

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: doInitBody()97, IterationTag.doAfterBody()104

doEndTag()

public int doEndTag()

throws JspException

Default processing of the end tag returning EVAL_PAGE.

Specified By: doEndTag120 in interface Tag118

Overrides: doEndTag156 in class TagSupport154

Returns: EVAL_PAGE

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: Tag.doEndTag()120

doInitBody()

public void doInitBody()

throws JspException

Prepare for evaluation of the body just before the first body evaluation: no action.

Specified By: doInitBody94 in interface BodyTag91

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: setBodyContent(BodyContent)98, doAfterBody()96,
BodyTag.doInitBody()94

doStartTag()

public int doStartTag()

throws JspException

Default processing of the start tag returning EVAL_BODY_BUFFERED.

Specified By: doStartTag121 in interface Tag118

Overrides: doStartTag156 in class TagSupport154

Returns: EVAL_BODY_BUFFERED

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: Tag.doStartTag()121

BodyTagSupport javax.servlet.jsp.tagext

getBodyContent()

2-98 JavaServer Pages 2.1 Specification • May 2006

getBodyContent()

public javax.servlet.jsp.tagext.BodyContent88 getBodyContent()

Get current bodyContent.

Returns: the body content.

getPreviousOut()

public javax.servlet.jsp.JspWriter46 getPreviousOut()

Get surrounding out JspWriter.

Returns: the enclosing JspWriter, from the bodyContent.

release()

public void release()

Release state.

Specified By: release122 in interface Tag118

Overrides: release157 in class TagSupport154

See Also: Tag.release()122

setBodyContent(BodyContent)

public void setBodyContent(javax.servlet.jsp.tagext.BodyContent88 b)

Prepare for evaluation of the body: stash the bodyContent away.

Specified By: setBodyContent94 in interface BodyTag91

Parameters:
b - the BodyContent

See Also: doAfterBody()96, doInitBody()97,
BodyTag.setBodyContent(BodyContent)94

javax.servlet.jsp.tagext DynamicAttributes

setDynamicAttribute(String, String, Object)

javax.servlet.jsp.tagext DynamicAttributes 2-99

javax.servlet.jsp.tagext

DynamicAttributes
Declaration
public interface DynamicAttributes

Description
For a tag to declare that it accepts dynamic attributes, it must implement this interface. The entry for the tag in
the Tag Library Descriptor must also be configured to indicate dynamic attributes are accepted.
For any attribute that is not declared in the Tag Library Descriptor for this tag, instead of getting an error at
translation time, the setDynamicAttribute() method is called, with the name and value of the attribute.
It is the responsibility of the tag to remember the names and values of the dynamic attributes.

Since: JSP 2.0

Methods

setDynamicAttribute(String, String, Object)

public void setDynamicAttribute(java.lang.String uri, java.lang.String localName,

java.lang.Object value)

throws JspException

Called when a tag declared to accept dynamic attributes is passed an attribute that is not declared in the Tag
Library Descriptor.

Parameters:
uri - the namespace of the attribute, or null if in the default namespace.

localName - the name of the attribute being set.

value - the value of the attribute

Throws:
javax.servlet.jsp.JspException37 - if the tag handler wishes to signal that it does not
accept the given attribute. The container must not call doStartTag() or doTag() for this tag.

Member Summary

Methods
 void setDynamicAttribute(java.lang.String uri, java.lang.String

localName, java.lang.Object value)99

FunctionInfo javax.servlet.jsp.tagext

FunctionInfo(String, String, String)

2-100 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

FunctionInfo
Declaration
public class FunctionInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.FunctionInfo

Description
Information for a function in a Tag Library. This class is instantiated from the Tag Library Descriptor file (TLD)
and is available only at translation time.

Since: JSP 2.0

Constructors

FunctionInfo(String, String, String)

public FunctionInfo(java.lang.String name, java.lang.String klass,

java.lang.String signature)

Constructor for FunctionInfo.

Parameters:
name - The name of the function

klass - The class of the function

Member Summary

Constructors
FunctionInfo(java.lang.String name, java.lang.String klass,
java.lang.String signature)100

Methods
 java.lang.String getFunctionClass()101
 java.lang.String getFunctionSignature()101
 java.lang.String getName()101

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

javax.servlet.jsp.tagext FunctionInfo

getFunctionClass()

javax.servlet.jsp.tagext FunctionInfo 2-101

signature - The signature of the function

Methods

getFunctionClass()

public java.lang.String getFunctionClass()

The class of the function.

Returns: The class of the function

getFunctionSignature()

public java.lang.String getFunctionSignature()

The signature of the function.

Returns: The signature of the function

getName()

public java.lang.String getName()

The name of the function.

Returns: The name of the function

IterationTag javax.servlet.jsp.tagext

getName()

2-102 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

IterationTag
Declaration
public interface IterationTag extends Tag118

All Superinterfaces: JspTag108, Tag118

All Known Subinterfaces: BodyTag91

All Known Implementing Classes: TagSupport154, BodyTagSupport95

Description
The IterationTag interface extends Tag by defining one additional method that controls the reevaluation of its
body.

A tag handler that implements IterationTag is treated as one that implements Tag regarding the doStartTag() and
doEndTag() methods. IterationTag provides a new method: doAfterBody().

The doAfterBody() method is invoked after every body evaluation to control whether the body will be
reevaluated or not. If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, then the body will be
reevaluated. If doAfterBody() returns Tag.SKIP_BODY, then the body will be skipped and doEndTag() will be
evaluated instead.

Properties There are no new properties in addition to those in Tag.

Methods There is one new methods: doAfterBody().

Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that are thrown during the
computation of doStartTag(), BODY and doAfterBody() interrupt the execution sequence and are propagated up
the stack, unless the tag handler implements the TryCatchFinally interface; see that interface for details.

javax.servlet.jsp.tagext IterationTag

getName()

javax.servlet.jsp.tagext IterationTag 2-103

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an empty element body, by a <body-
content> entry of “empty”, then the doStartTag() method must return SKIP_BODY.

Note that which methods are invoked after the doStartTag() depends on both the return value and on if the
custom action element is empty or not in the JSP page, not on how it’s declared in the TLD.

If SKIP_BODY is returned the body is not evaluated, and then doEndTag() is invoked.

If EVAL_BODY_INCLUDE is returned, and the custom action element is not empty, the body is evaluated and
“passed through” to the current out, then doAfterBody() is invoked and, after zero or more iterations,
doEndTag() is invoked.

Member Summary

Fields
static int EVAL_BODY_AGAIN104

Methods
 int doAfterBody()104

Inherited Member Summary

Fields inherited from interface Tag118

IterationTag javax.servlet.jsp.tagext

EVAL_BODY_AGAIN

2-104 JavaServer Pages 2.1 Specification • May 2006

Fields

EVAL_BODY_AGAIN

public static final int EVAL_BODY_AGAIN

Request the reevaluation of some body. Returned from doAfterBody. For compatibility with JSP 1.1, the
value is carefully selected to be the same as the, now deprecated, BodyTag.EVAL_BODY_TAG,

Methods

doAfterBody()

public int doAfterBody()

throws JspException

Process body (re)evaluation. This method is invoked by the JSP Page implementation object after every
evaluation of the body into the BodyEvaluation object. The method is not invoked if there is no body
evaluation.

If doAfterBody returns EVAL_BODY_AGAIN, a new evaluation of the body will happen (followed by
another invocation of doAfterBody). If doAfterBody returns SKIP_BODY, no more body evaluations will
occur, and the doEndTag method will be invoked.

If this tag handler implements BodyTag and doAfterBody returns SKIP_BODY, the value of out will be
restored using the popBody method in pageContext prior to invoking doEndTag.

The method re-invocations may be lead to different actions because there might have been some changes to
shared state, or because of external computation.

The JSP container will resynchronize the values of any AT_BEGIN and NESTED variables (defined by the
associated TagExtraInfo or TLD) after the invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

EVAL_BODY_INCLUDE120, EVAL_PAGE120, SKIP_BODY120, SKIP_PAGE120

Methods inherited from interface Tag118

doEndTag()120, doStartTag()121, getParent()121, release()122,
setPageContext(PageContext)122, setParent(Tag)122

Inherited Member Summary

javax.servlet.jsp.tagext JspFragment

doAfterBody()

javax.servlet.jsp.tagext JspFragment 2-105

javax.servlet.jsp.tagext

JspFragment
Declaration
public abstract class JspFragment

java.lang.Object
|
+--javax.servlet.jsp.tagext.JspFragment

Description
Encapsulates a portion of JSP code in an object that can be invoked as many times as needed. JSP Fragments are
defined using JSP syntax as the body of a tag for an invocation to a SimpleTag handler, or as the body of a
<jsp:attribute> standard action specifying the value of an attribute that is declared as a fragment, or to be of type
JspFragment in the TLD.

The definition of the JSP fragment must only contain template text and JSP action elements. In other words, it
must not contain scriptlets or scriptlet expressions. At translation time, the container generates an
implementation of the JspFragment abstract class capable of executing the defined fragment.

A tag handler can invoke the fragment zero or more times, or pass it along to other tags, before returning. To
communicate values to/from a JSP fragment, tag handlers store/retrieve values in the JspContext associated with
the fragment.

Note that tag library developers and page authors should not generate JspFragment implementations manually.

Implementation Note: It is not necessary to generate a separate class for each fragment. One possible
implementation is to generate a single helper class for each page that implements JspFragment. Upon
construction, a discriminator can be passed to select which fragment that instance will execute.

Since: JSP 2.0

Member Summary

Constructors
JspFragment()106

Methods
abstract

javax.servlet.jsp.JspC
ontext

getJspContext()106

abstract void invoke(java.io.Writer out)106

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

JspFragment javax.servlet.jsp.tagext

JspFragment()

2-106 JavaServer Pages 2.1 Specification • May 2006

Constructors

JspFragment()

public JspFragment()

Methods

getJspContext()

public abstract javax.servlet.jsp.JspContext29 getJspContext()

Returns the JspContext that is bound to this JspFragment.

Returns: The JspContext used by this fragment at invocation time.

invoke(Writer)

public abstract void invoke(java.io.Writer out)

throws JspException, IOException

Executes the fragment and directs all output to the given Writer, or the JspWriter returned by the getOut()
method of the JspContext associated with the fragment if out is null.

Parameters:
out - The Writer to output the fragment to, or null if output should be sent to JspContext.getOut().

Throws:
javax.servlet.jsp.JspException37 - Thrown if an error occured while invoking this
fragment.

javax.servlet.jsp.SkipPageException65 - Thrown if the page that (either directly or
indirectly) invoked the tag handler that invoked this fragment is to cease evaluation. The container must
throw this exception if a Classic Tag Handler returned Tag.SKIP_PAGE or if a Simple Tag Handler
threw SkipPageException.

java.io.IOException - If there was an error writing to the stream.

javax.servlet.jsp.tagext JspIdConsumer

setJspId(String)

javax.servlet.jsp.tagext JspIdConsumer 2-107

javax.servlet.jsp.tagext

JspIdConsumer
Declaration
public interface JspIdConsumer

Description
This interface indicates to the container that a tag handler wishes to be provided with a compiler generated ID.

The container sets the jspId attribute of the tag handler with an identification string, as part of tag property
initialization. Each tag in a JSP page has a unique jspId, and a given tag in a JSP page always has the same
jspId, even for multiple requests to the page.

Tag handler instances that implement JspIdConsumer cannot be reused.

Even though the jspId attribute is similar in concept to the jsp:id attribute of an XML view (see Section
JSP.10.1.13 of the spec), they are not related. The jsp:id attribute is available only at translation time, and the
jspId attribute is avalable only at request time.

The JSP container must provide a value for jspId that conforms to the following rules:

• It must start with a letter (as defined by the Character.isLetter() method) or underscore (’_’).

• Subsequent characters may be letters (as defined by the Character.isLetter() method), digits (as
defined by the Character.isDigit() method), dashes (’-’), or underscores (’_’)

Note that the rules exclude colons ’:’ in a jspId, and that they are the same rules used for a component ID in
JavaServer Faces.

Since: JSP 2.1

Methods

setJspId(String)

public void setJspId(java.lang.String id)

Called by the container generated code to set a value for the jspId attribute. An unique identification string,
relative to this page, is generated at translation time.

Member Summary

Methods
 void setJspId(java.lang.String id)107

JspTag javax.servlet.jsp.tagext

setJspId(String)

2-108 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

JspTag
Declaration
public interface JspTag

All Known Subinterfaces: BodyTag91, IterationTag102, SimpleTag111, Tag118

All Known Implementing Classes: BodyTagSupport95, TagSupport154,
SimpleTagSupport114, TagAdapter123

Description
Serves as a base class for Tag and SimpleTag. This is mostly for organizational and type-safety purposes.

Since: JSP 2.0

javax.servlet.jsp.tagext PageData

PageData()

javax.servlet.jsp.tagext PageData 2-109

javax.servlet.jsp.tagext

PageData
Declaration
public abstract class PageData

java.lang.Object
|
+--javax.servlet.jsp.tagext.PageData

Description
Translation-time information on a JSP page. The information corresponds to the XML view of the JSP page.

Objects of this type are generated by the JSP translator, e.g. when being pased to a TagLibraryValidator
instance.

Constructors

PageData()

public PageData()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

getInputStream()

public abstract java.io.InputStream getInputStream()

Member Summary

Constructors
PageData()109

Methods
abstract

java.io.InputStream
getInputStream()109

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

PageData javax.servlet.jsp.tagext

getInputStream()

2-110 JavaServer Pages 2.1 Specification • May 2006

Returns an input stream on the XML view of a JSP page. The stream is encoded in UTF-8. Recall tht the
XML view of a JSP page has the include directives expanded.

Returns: An input stream on the document.

javax.servlet.jsp.tagext SimpleTag

getInputStream()

javax.servlet.jsp.tagext SimpleTag 2-111

javax.servlet.jsp.tagext

SimpleTag
Declaration
public interface SimpleTag extends JspTag108

All Superinterfaces: JspTag108

All Known Implementing Classes: SimpleTagSupport114

Description
Interface for defining Simple Tag Handlers.

Simple Tag Handlers differ from Classic Tag Handlers in that instead of supporting doStartTag() and
doEndTag(), the SimpleTag interface provides a simple doTag() method, which is called once and only
once for any given tag invocation. All tag logic, iteration, body evaluations, etc. are to be performed in this
single method. Thus, simple tag handlers have the equivalent power of BodyTag, but with a much simpler
lifecycle and interface.

To support body content, the setJspBody() method is provided. The container invokes the
setJspBody() method with a JspFragment object encapsulating the body of the tag. The tag handler
implementation can call invoke() on that fragment to evaluate the body as many times as it needs.

A SimpleTag handler must have a public no-args constructor. Most SimpleTag handlers should extend
SimpleTagSupport.

Lifecycle

The following is a non-normative, brief overview of the SimpleTag lifecycle. Refer to the JSP Specification for
details.

1. A new tag handler instance is created each time by the container by calling the provided zero-args
constructor. Unlike classic tag handlers, simple tag handlers are never cached and reused by the JSP
container.

2. The setJspContext() and setParent() methods are called by the container. The setParent()
method is only called if the element is nested within another tag invocation.

3. The setters for each attribute defined for this tag are called by the container.

4. If a body exists, the setJspBody() method is called by the container to set the body of this tag, as a
JspFragment. If the action element is empty in the page, this method is not called at all.

5. The doTag() method is called by the container. All tag logic, iteration, body evaluations, etc. occur in this
method.

6. The doTag() method returns and all variables are synchronized.

Since: JSP 2.0

See Also: SimpleTagSupport114

SimpleTag javax.servlet.jsp.tagext

doTag()

2-112 JavaServer Pages 2.1 Specification • May 2006

Methods

doTag()

public void doTag()

throws JspException, IOException

Called by the container to invoke this tag. The implementation of this method is provided by the tag library
developer, and handles all tag processing, body iteration, etc.

The JSP container will resynchronize any AT_BEGIN and AT_END variables (defined by the associated
tag file, TagExtraInfo, or TLD) after the invocation of doTag().

Throws:
javax.servlet.jsp.JspException37 - If an error occurred while processing this tag.

javax.servlet.jsp.SkipPageException65 - If the page that (either directly or indirectly)
invoked this tag is to cease evaluation. A Simple Tag Handler generated from a tag file must throw this
exception if an invoked Classic Tag Handler returned SKIP_PAGE or if an invoked Simple Tag Handler
threw SkipPageException or if an invoked Jsp Fragment threw a SkipPageException.

java.io.IOException - If there was an error writing to the output stream.

getParent()

public javax.servlet.jsp.tagext.JspTag108 getParent()

Returns the parent of this tag, for collaboration purposes.

Returns: the parent of this tag

setJspBody(JspFragment)

public void setJspBody(javax.servlet.jsp.tagext.JspFragment105 jspBody)

Provides the body of this tag as a JspFragment object, able to be invoked zero or more times by the tag
handler.

This method is invoked by the JSP page implementation object prior to doTag(). If the action element is
empty in the page, this method is not called at all.

Parameters:
jspBody - The fragment encapsulating the body of this tag.

setJspContext(JspContext)

public void setJspContext(javax.servlet.jsp.JspContext29 pc)

Member Summary

Methods
 void doTag()112

 JspTag getParent()112
 void setJspBody(JspFragment jspBody)112
 void setJspContext(javax.servlet.jsp.JspContext pc)112
 void setParent(JspTag parent)113

javax.servlet.jsp.tagext SimpleTag

setParent(JspTag)

javax.servlet.jsp.tagext SimpleTag 2-113

Called by the container to provide this tag handler with the JspContext for this invocation. An
implementation should save this value.

Parameters:
pc - the page context for this invocation

See Also: Tag.setPageContext(PageContext)122

setParent(JspTag)

public void setParent(javax.servlet.jsp.tagext.JspTag108 parent)

Sets the parent of this tag, for collaboration purposes.

The container invokes this method only if this tag invocation is nested within another tag invocation.

Parameters:
parent - the tag that encloses this tag

SimpleTagSupport javax.servlet.jsp.tagext

setParent(JspTag)

2-114 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

SimpleTagSupport
Declaration
public class SimpleTagSupport implements SimpleTag111

java.lang.Object
|
+--javax.servlet.jsp.tagext.SimpleTagSupport

All Implemented Interfaces: JspTag108, SimpleTag111

Description
A base class for defining tag handlers implementing SimpleTag.

The SimpleTagSupport class is a utility class intended to be used as the base class for new simple tag handlers.
The SimpleTagSupport class implements the SimpleTag interface and adds additional convenience methods
including getter methods for the properties in SimpleTag.

Since: JSP 2.0

Member Summary

Constructors
SimpleTagSupport()115

Methods
 void doTag()115

static JspTag findAncestorWithClass(JspTag from, java.lang.Class<?>
klass)115

protected JspFragment getJspBody()116
protected

javax.servlet.jsp.JspC
ontext

getJspContext()116

 JspTag getParent()116
 void setJspBody(JspFragment jspBody)116
 void setJspContext(javax.servlet.jsp.JspContext pc)116
 void setParent(JspTag parent)117

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

javax.servlet.jsp.tagext SimpleTagSupport

SimpleTagSupport()

javax.servlet.jsp.tagext SimpleTagSupport 2-115

Constructors

SimpleTagSupport()

public SimpleTagSupport()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

doTag()

public void doTag()

throws JspException, IOException

Default processing of the tag does nothing.

Specified By: doTag112 in interface SimpleTag111

Throws:
javax.servlet.jsp.JspException37 - Subclasses can throw JspException to indicate an
error occurred while processing this tag.

javax.servlet.jsp.SkipPageException65 - If the page that (either directly or indirectly)
invoked this tag is to cease evaluation. A Simple Tag Handler generated from a tag file must throw this
exception if an invoked Classic Tag Handler returned SKIP_PAGE or if an invoked Simple Tag Handler
threw SkipPageException or if an invoked Jsp Fragment threw a SkipPageException.

java.io.IOException - Subclasses can throw IOException if there was an error writing to the
output stream

See Also: SimpleTag.doTag()112

findAncestorWithClass(JspTag, Class)

public static final javax.servlet.jsp.tagext.JspTag108
findAncestorWithClass(javax.servlet.jsp.tagext.JspTag108 from,

java.lang.Class<?> klass)

Find the instance of a given class type that is closest to a given instance. This method uses the getParent
method from the Tag and/or SimpleTag interfaces. This method is used for coordination among cooperating
tags.

For every instance of TagAdapter encountered while traversing the ancestors, the tag handler returned by
TagAdapter.getAdaptee() - instead of the TagAdpater itself - is compared to klass. If the tag
handler matches, it - and not its TagAdapter - is returned.

The current version of the specification only provides one formal way of indicating the observable type of a
tag handler: its tag handler implementation class, described in the tag-class subelement of the tag element.
This is extended in an informal manner by allowing the tag library author to indicate in the description
subelement an observable type. The type should be a subtype of the tag handler implementation class or
void. This addititional constraint can be exploited by a specialized container that knows about that specific
tag library, as in the case of the JSP standard tag library.

SimpleTagSupport javax.servlet.jsp.tagext

getJspBody()

2-116 JavaServer Pages 2.1 Specification • May 2006

When a tag library author provides information on the observable type of a tag handler, client programmatic
code should adhere to that constraint. Specifically, the Class passed to findAncestorWithClass should be a
subtype of the observable type.

Parameters:
from - The instance from where to start looking.

klass - The subclass of JspTag or interface to be matched

Returns: the nearest ancestor that implements the interface or is an instance of the class specified

getJspBody()

protected javax.servlet.jsp.tagext.JspFragment105 getJspBody()

Returns the body passed in by the container via setJspBody.

Returns: the fragment encapsulating the body of this tag, or null if the action element is empty in the page.

getJspContext()

protected javax.servlet.jsp.JspContext29 getJspContext()

Returns the page context passed in by the container via setJspContext.

Returns: the page context for this invocation

getParent()

public javax.servlet.jsp.tagext.JspTag108 getParent()

Returns the parent of this tag, for collaboration purposes.

Specified By: getParent112 in interface SimpleTag111

Returns: the parent of this tag

setJspBody(JspFragment)

public void setJspBody(javax.servlet.jsp.tagext.JspFragment105 jspBody)

Stores the provided JspFragment.

Specified By: setJspBody112 in interface SimpleTag111

Parameters:
jspBody - The fragment encapsulating the body of this tag. If the action element is empty in the page,
this method is not called at all.

See Also: SimpleTag.setJspBody(JspFragment)112

setJspContext(JspContext)

public void setJspContext(javax.servlet.jsp.JspContext29 pc)

Stores the provided JSP context in the private jspContext field. Subclasses can access the JspContext
via getJspContext().

Specified By: setJspContext112 in interface SimpleTag111

Parameters:
pc - the page context for this invocation

javax.servlet.jsp.tagext SimpleTagSupport

setParent(JspTag)

javax.servlet.jsp.tagext SimpleTagSupport 2-117

See Also: SimpleTag.setJspContext(JspContext)112

setParent(JspTag)

public void setParent(javax.servlet.jsp.tagext.JspTag108 parent)

Sets the parent of this tag, for collaboration purposes.

The container invokes this method only if this tag invocation is nested within another tag invocation.

Specified By: setParent113 in interface SimpleTag111

Parameters:
parent - the tag that encloses this tag

Tag javax.servlet.jsp.tagext

setParent(JspTag)

2-118 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

Tag
Declaration
public interface Tag extends JspTag108

All Superinterfaces: JspTag108

All Known Subinterfaces: BodyTag91, IterationTag102

All Known Implementing Classes: TagAdapter123, BodyTagSupport95, TagSupport154

Description
The interface of a classic tag handler that does not want to manipulate its body. The Tag interface defines the
basic protocol between a Tag handler and JSP page implementation class. It defines the life cycle and the
methods to be invoked at start and end tag.

Properties

The Tag interface specifies the setter and getter methods for the core pageContext and parent properties.

The JSP page implementation object invokes setPageContext and setParent, in that order, before invoking
doStartTag() or doEndTag().

Methods

There are two main actions: doStartTag and doEndTag. Once all appropriate properties have been initialized, the
doStartTag and doEndTag methods can be invoked on the tag handler. Between these invocations, the tag
handler is assumed to hold a state that must be preserved. After the doEndTag invocation, the tag handler is
available for further invocations (and it is expected to have retained its properties).

Lifecycle

Lifecycle details are described by the transition diagram below, with the following comments:

• [1] This transition is intended to be for releasing long-term data. no guarantees are assumed on whether any
properties have been retained or not.

• [2] This transition happens if and only if the tag ends normally without raising an exception

• [3] Some setters may be called again before a tag handler is reused. For instance, setParent() is called
if it’s reused within the same page but at a different level, setPageContext() is called if it’s used in
another page, and attribute setters are called if the values differ or are expressed as request-time attribute
values.

• Check the TryCatchFinally interface for additional details related to exception handling and resource
management.

javax.servlet.jsp.tagext Tag

setParent(JspTag)

javax.servlet.jsp.tagext Tag 2-119

Once all invocations on the tag handler are completed, the release method is invoked on it. Once a release
method is invoked all properties, including parent and pageContext, are assumed to have been reset to an
unspecified value. The page compiler guarantees that release() will be invoked on the Tag handler before the
handler is released to the GC.

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an empty action, by an <body-
content> entry of “empty”, then the doStartTag() method must return SKIP_BODY.

Otherwise, the doStartTag() method may return SKIP_BODY or EVAL_BODY_INCLUDE.

If SKIP_BODY is returned the body, if present, is not evaluated.

If EVAL_BODY_INCLUDE is returned, the body is evaluated and “passed through” to the current out.

Member Summary

Fields
static int EVAL_BODY_INCLUDE120
static int EVAL_PAGE120
static int SKIP_BODY120
static int SKIP_PAGE120

Tag javax.servlet.jsp.tagext

EVAL_BODY_INCLUDE

2-120 JavaServer Pages 2.1 Specification • May 2006

Fields

EVAL_BODY_INCLUDE

public static final int EVAL_BODY_INCLUDE

Evaluate body into existing out stream. Valid return value for doStartTag.

EVAL_PAGE

public static final int EVAL_PAGE

Continue evaluating the page. Valid return value for doEndTag().

SKIP_BODY

public static final int SKIP_BODY

Skip body evaluation. Valid return value for doStartTag and doAfterBody.

SKIP_PAGE

public static final int SKIP_PAGE

Skip the rest of the page. Valid return value for doEndTag.

Methods

doEndTag()

public int doEndTag()

throws JspException

Process the end tag for this instance. This method is invoked by the JSP page implementation object on all
Tag handlers.

This method will be called after returning from doStartTag. The body of the action may or may not have
been evaluated, depending on the return value of doStartTag.

If this method returns EVAL_PAGE, the rest of the page continues to be evaluated. If this method returns
SKIP_PAGE, the rest of the page is not evaluated, the request is completed, and the doEndTag() methods of
enclosing tags are not invoked. If this request was forwarded or included from another page (or Servlet),
only the current page evaluation is stopped.

Methods
 int doEndTag()120
 int doStartTag()121
 Tag getParent()121
 void release()122
 void setPageContext(javax.servlet.jsp.PageContext pc)122
 void setParent(Tag t)122

Member Summary

javax.servlet.jsp.tagext Tag

doStartTag()

javax.servlet.jsp.tagext Tag 2-121

The JSP container will resynchronize the values of any AT_BEGIN and AT_END variables (defined by the
associated TagExtraInfo or TLD) after the invocation of doEndTag().

Returns: indication of whether to continue evaluating the JSP page.

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

doStartTag()

public int doStartTag()

throws JspException

Process the start tag for this instance. This method is invoked by the JSP page implementation object.

The doStartTag method assumes that the properties pageContext and parent have been set. It also assumes
that any properties exposed as attributes have been set too. When this method is invoked, the body has not
yet been evaluated.

This method returns Tag.EVAL_BODY_INCLUDE or BodyTag.EVAL_BODY_BUFFERED to indicate
that the body of the action should be evaluated or SKIP_BODY to indicate otherwise.

When a Tag returns EVAL_BODY_INCLUDE the result of evaluating the body (if any) is included into the
current “out” JspWriter as it happens and then doEndTag() is invoked.

BodyTag.EVAL_BODY_BUFFERED is only valid if the tag handler implements BodyTag.

The JSP container will resynchronize the values of any AT_BEGIN and NESTED variables (defined by the
associated TagExtraInfo or TLD) after the invocation of doStartTag(), except for a tag handler
implementing BodyTag whose doStartTag() method returns BodyTag.EVAL_BODY_BUFFERED.

Returns: EVAL_BODY_INCLUDE if the tag wants to process body, SKIP_BODY if it does not want to
process it.

Throws:
javax.servlet.jsp.JspException37 - if an error occurred while processing this tag

See Also: BodyTag91

getParent()

public javax.servlet.jsp.tagext.Tag118 getParent()

Get the parent (closest enclosing tag handler) for this tag handler.

The getParent() method can be used to navigate the nested tag handler structure at runtime for cooperation
among custom actions; for example, the findAncestorWithClass() method in TagSupport provides a
convenient way of doing this.

The current version of the specification only provides one formal way of indicating the observable type of a
tag handler: its tag handler implementation class, described in the tag-class subelement of the tag element.
This is extended in an informal manner by allowing the tag library author to indicate in the description
subelement an observable type. The type should be a subtype of the tag handler implementation class or
void. This addititional constraint can be exploited by a specialized container that knows about that specific
tag library, as in the case of the JSP standard tag library.

Returns: the current parent, or null if none.

See Also: TagSupport.findAncestorWithClass(Tag, Class)156

Tag javax.servlet.jsp.tagext

release()

2-122 JavaServer Pages 2.1 Specification • May 2006

release()

public void release()

Called on a Tag handler to release state. The page compiler guarantees that JSP page implementation
objects will invoke this method on all tag handlers, but there may be multiple invocations on doStartTag and
doEndTag in between.

setPageContext(PageContext)

public void setPageContext(javax.servlet.jsp.PageContext56 pc)

Set the current page context. This method is invoked by the JSP page implementation object prior to
doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a page implementation if it changes
between calls to doStartTag().

Parameters:
pc - The page context for this tag handler.

setParent(Tag)

public void setParent(javax.servlet.jsp.tagext.Tag118 t)

Set the parent (closest enclosing tag handler) of this tag handler. Invoked by the JSP page implementation
object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a page implementation.

Parameters:
t - The parent tag, or null.

javax.servlet.jsp.tagext TagAdapter

setParent(Tag)

javax.servlet.jsp.tagext TagAdapter 2-123

javax.servlet.jsp.tagext

TagAdapter
Declaration
public class TagAdapter implements Tag118

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagAdapter

All Implemented Interfaces: JspTag108, Tag118

Description
Wraps any SimpleTag and exposes it using a Tag interface. This is used to allow collaboration between classic
Tag handlers and SimpleTag handlers.

Because SimpleTag does not extend Tag, and because Tag.setParent() only accepts a Tag instance, a classic tag
handler (one that implements Tag) cannot have a SimpleTag as its parent. To remedy this, a TagAdapter is
created to wrap the SimpleTag parent, and the adapter is passed to setParent() instead. A classic Tag Handler
can call getAdaptee() to retrieve the encapsulated SimpleTag instance.

Since: JSP 2.0

Member Summary

Constructors
TagAdapter(SimpleTag adaptee)124

Methods
 int doEndTag()124
 int doStartTag()124

 JspTag getAdaptee()124
 Tag getParent()124
 void release()125
 void setPageContext(javax.servlet.jsp.PageContext pc)125
 void setParent(Tag parentTag)125

Inherited Member Summary

Fields inherited from interface Tag118

EVAL_BODY_INCLUDE120, EVAL_PAGE120, SKIP_BODY120, SKIP_PAGE120

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

TagAdapter javax.servlet.jsp.tagext

TagAdapter(SimpleTag)

2-124 JavaServer Pages 2.1 Specification • May 2006

Constructors

TagAdapter(SimpleTag)

public TagAdapter(javax.servlet.jsp.tagext.SimpleTag111 adaptee)

Creates a new TagAdapter that wraps the given SimpleTag and returns the parent tag when getParent() is
called.

Parameters:
adaptee - The SimpleTag being adapted as a Tag.

Methods

doEndTag()

public int doEndTag()

throws JspException

Must not be called.

Specified By: doEndTag120 in interface Tag118

Returns: always throws UnsupportedOperationException

Throws:
java.lang.UnsupportedOperationException - Must not be called

javax.servlet.jsp.JspException37 - never thrown

doStartTag()

public int doStartTag()

throws JspException

Must not be called.

Specified By: doStartTag121 in interface Tag118

Returns: always throws UnsupportedOperationException

Throws:
java.lang.UnsupportedOperationException - Must not be called

javax.servlet.jsp.JspException37 - never thrown

getAdaptee()

public javax.servlet.jsp.tagext.JspTag108 getAdaptee()

Gets the tag that is being adapted to the Tag interface. This should be an instance of SimpleTag in JSP 2.0,
but room is left for other kinds of tags in future spec versions.

Returns: the tag that is being adapted

getParent()

public javax.servlet.jsp.tagext.Tag118 getParent()

javax.servlet.jsp.tagext TagAdapter

release()

javax.servlet.jsp.tagext TagAdapter 2-125

Returns the parent of this tag, which is always getAdaptee().getParent(). This will either be the enclosing
Tag (if getAdaptee().getParent() implements Tag), or an adapter to the enclosing Tag (if
getAdaptee().getParent() does not implement Tag).

Specified By: getParent121 in interface Tag118

Returns: The parent of the tag being adapted.

release()

public void release()

Must not be called.

Specified By: release122 in interface Tag118

Throws:
java.lang.UnsupportedOperationException - Must not be called

setPageContext(PageContext)

public void setPageContext(javax.servlet.jsp.PageContext56 pc)

Must not be called.

Specified By: setPageContext122 in interface Tag118

Parameters:
pc - ignored.

Throws:
java.lang.UnsupportedOperationException - Must not be called

setParent(Tag)

public void setParent(javax.servlet.jsp.tagext.Tag118 parentTag)

Must not be called. The parent of this tag is always getAdaptee().getParent().

Specified By: setParent122 in interface Tag118

Parameters:
parentTag - ignored.

Throws:
java.lang.UnsupportedOperationException - Must not be called.

TagAttributeInfo javax.servlet.jsp.tagext

setParent(Tag)

2-126 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

TagAttributeInfo
Declaration
public class TagAttributeInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagAttributeInfo

Description
Information on the attributes of a Tag, available at translation time. This class is instantiated from the Tag
Library Descriptor file (TLD).

Only the information needed to generate code is included here. Other information like SCHEMA for validation
belongs elsewhere.

Note from the Expert Group:
This should have been designed as an interface. Every time we change the TLD, we need to add a new
constructor to this class (not good). This class should only be instantiated by container implementations (not by
JSP developers).

Member Summary

Fields
static

java.lang.String
ID127

Constructors
TagAttributeInfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime)127
TagAttributeInfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime, boolean fragment)127
TagAttributeInfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime, boolean fragment,
java.lang.String description, boolean deferredValue, boolean
deferredMethod, java.lang.String expectedTypeName,
java.lang.String methodSignature)128

Methods
 boolean canBeRequestTime()128

 java.lang.String getDescription()128
 java.lang.String getExpectedTypeName()129

static
TagAttributeInfo

getIdAttribute(TagAttributeInfo[] a)129

 java.lang.String getMethodSignature()129
 java.lang.String getName()129
 java.lang.String getTypeName()129

 boolean isDeferredMethod()129
 boolean isDeferredValue()130
 boolean isFragment()130
 boolean isRequired()130

javax.servlet.jsp.tagext TagAttributeInfo

ID

javax.servlet.jsp.tagext TagAttributeInfo 2-127

Fields

ID

public static final java.lang.String ID

“id” is wired in to be ID. There is no real benefit in having it be something else IDREFs are not handled any
differently.

Constructors

TagAttributeInfo(String, boolean, String, boolean)

public TagAttributeInfo(java.lang.String name, boolean required, java.lang.String type,

boolean reqTime)

Constructor for TagAttributeInfo. This class is to be instantiated only from the TagLibrary code under
request from some JSP code that is parsing a TLD (Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

reqTime - Whether this attribute holds a request-time Attribute.

TagAttributeInfo(String, boolean, String, boolean, boolean)

public TagAttributeInfo(java.lang.String name, boolean required, java.lang.String type,

boolean reqTime, boolean fragment)

JSP 2.0 Constructor for TagAttributeInfo. This class is to be instantiated only from the TagLibrary code
under request from some JSP code that is parsing a TLD (Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

 java.lang.String toString()130

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Member Summary

TagAttributeInfo javax.servlet.jsp.tagext

TagAttributeInfo(String, boolean, String, boolean, boolean, String, boolean, boolean, String, String)

2-128 JavaServer Pages 2.1 Specification • May 2006

reqTime - Whether this attribute holds a request-time Attribute.

fragment - Whether this attribute is of type JspFragment

Since: JSP 2.0

TagAttributeInfo(String, boolean, String, boolean, boolean, String, boolean, boolean, String, String)

public TagAttributeInfo(java.lang.String name, boolean required, java.lang.String type,

boolean reqTime, boolean fragment, java.lang.String description,

boolean deferredValue, boolean deferredMethod,

java.lang.String expectedTypeName, java.lang.String methodSignature)

JSP 2.1 Constructor for TagAttributeInfo. This class is to be instantiated only from the TagLibrary code
under request from some JSP code that is parsing a TLD (Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

reqTime - Whether this attribute holds a request-time Attribute.

fragment - Whether this attribute is of type JspFragment

description - The description of the attribute.

deferredValue - Whether this attribute is a deferred value.

deferredMethod - Whether this attribute is a deferred method. rtexpr or deferred value.

expectedTypeName - The name of the expected type of this deferred value (or null if this is not a
deferred value).

methodSignature - The expected method signature of this deferred method (or null if this is not
a deferred method).

Since: JSP 2.1

Methods

canBeRequestTime()

public boolean canBeRequestTime()

Whether this attribute has been specified in the TLD as rtexprvalue. If true, this means the attribute can
hold a request-time value.

Returns: true if the attribute has been specified in the TLD as rtexprvalue

getDescription()

public java.lang.String getDescription()

Gets the description string of this tag attribute.

Returns: the description string of this tag attribute

javax.servlet.jsp.tagext TagAttributeInfo

getExpectedTypeName()

javax.servlet.jsp.tagext TagAttributeInfo 2-129

getExpectedTypeName()

public java.lang.String getExpectedTypeName()

Returns the name of the expected type (as a String) of this deferred value attribute.

This method returns null if isDeferredValue() returns false.

Returns: the name of the expected type

Since: JSP 2.1

getIdAttribute(TagAttributeInfo[])

public static javax.servlet.jsp.tagext.TagAttributeInfo126
getIdAttribute(javax.servlet.jsp.tagext.TagAttributeInfo[]126 a)

Convenience static method that goes through an array of TagAttributeInfo objects and looks for “id”.

Parameters:
a - An array of TagAttributeInfo

Returns: The TagAttributeInfo reference with name “id”

getMethodSignature()

public java.lang.String getMethodSignature()

Returns the expected method signature of this deferred method attribute.

This method returns null if isDeferredMethod() returns false.

Returns: the method signature

Since: JSP 2.1

getName()

public java.lang.String getName()

The name of this attribute.

Returns: the name of the attribute

getTypeName()

public java.lang.String getTypeName()

The type (as a String) of this attribute.

This method must return “javax.el.ValueExpression” if isDeferredValue() returns true
and canBeRequestTime() returns false. It must return “javax.el.MethodExpression” if
isDeferredMethod() returns true. It must return “java.lang.Object” if
isDeferredValue() returns true and canBeRequestTime() returns true.

Returns: the type of the attribute

isDeferredMethod()

public boolean isDeferredMethod()

Returns true if this attribute is to be passed a MethodExpression so that expression evaluation can be
deferred.

TagAttributeInfo javax.servlet.jsp.tagext

isDeferredValue()

2-130 JavaServer Pages 2.1 Specification • May 2006

If this method returns true, then getTypeName() must return
“javax.el.MethodExpression”.

The getMethodSignature() method can be used to retrieve the expected method signature this
method expression will be constructed with.

Returns: true if this attribute accepts a deferred method; false otherwise.

Since: JSP 2.1

isDeferredValue()

public boolean isDeferredValue()

Returns true if this attribute is to be passed a ValueExpression so that expression evaluation can be
deferred.

If this method returns true, then getTypeName() must return “javax.el.ValueExpression”.

The getExpectedType() method can be used to retrieve the expected type this value expression will
be constructed with.

Returns: true if this attribute accepts a deferred value; false otherwise.

Since: JSP 2.1

isFragment()

public boolean isFragment()

Whether this attribute is of type JspFragment.

Returns: if the attribute is of type JspFragment

Since: JSP 2.0

isRequired()

public boolean isRequired()

Whether this attribute is required.

Returns: if the attribute is required.

toString()

public java.lang.String toString()

Returns a String representation of this TagAttributeInfo, suitable for debugging purposes.

Overrides: toString in class Object

Returns: a String representation of this TagAttributeInfo

javax.servlet.jsp.tagext TagData

toString()

javax.servlet.jsp.tagext TagData 2-131

javax.servlet.jsp.tagext

TagData
Declaration
public class TagData implements java.lang.Cloneable

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagData

All Implemented Interfaces: java.lang.Cloneable

Description
The (translation-time only) attribute/value information for a tag instance.

TagData is only used as an argument to the isValid, validate, and getVariableInfo methods of TagExtraInfo,
which are invoked at translation time.

Member Summary

Fields
static

java.lang.Object
REQUEST_TIME_VALUE132

Constructors
TagData(java.util.Hashtable<java.lang.String,java.lang.Object
> attrs)132
TagData(java.lang.Object[][] atts)132

Methods
 java.lang.Object getAttribute(java.lang.String attName)132

 java.util.Enumeration
<java.lang.String>

getAttributes()133

 java.lang.String getAttributeString(java.lang.String attName)133
 java.lang.String getId()133

 void setAttribute(java.lang.String attName, java.lang.Object
value)133

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

TagData javax.servlet.jsp.tagext

REQUEST_TIME_VALUE

2-132 JavaServer Pages 2.1 Specification • May 2006

Fields

REQUEST_TIME_VALUE

public static final java.lang.Object REQUEST_TIME_VALUE

Distinguished value for an attribute to indicate its value is a request-time expression (which is not yet
available because TagData instances are used at translation-time).

Constructors

TagData(Object[][])

public TagData(java.lang.Object[][] atts)

Constructor for TagData.

A typical constructor may be

static final Object[][] att = {{“connection”, “conn0”}, {“id”, “query0”}};
static final TagData td = new TagData(att);

All values must be Strings except for those holding the distinguished object REQUEST_TIME_VALUE.

Parameters:
atts - the static attribute and values. May be null.

TagData(Hashtable)

public TagData(java.util.Hashtable<java.lang.String,java.lang.Object> attrs)

Constructor for a TagData. If you already have the attributes in a hashtable, use this constructor.

Parameters:
attrs - A hashtable to get the values from.

Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String attName)

The value of the attribute. If a static value is specified for an attribute that accepts a request-time attribute
expression then that static value is returned, even if the value is provided in the body of a <jsp:attribute>
action. The distinguished object REQUEST_TIME_VALUE is only returned if the value is specified as a
request-time attribute expression or via the <jsp:attribute> action with a body that contains dynamic content
(scriptlets, scripting expressions, EL expressions, standard actions, or custom actions). Returns null if the
attribute is not set.

Parameters:
attName - the name of the attribute

Returns: the attribute’s value

javax.servlet.jsp.tagext TagData

getAttributes()

javax.servlet.jsp.tagext TagData 2-133

getAttributes()

public java.util.Enumeration<java.lang.String> getAttributes()

Enumerates the attributes.

Returns: An enumeration of the attributes in a TagData

getAttributeString(String)

public java.lang.String getAttributeString(java.lang.String attName)

Get the value for a given attribute.

Parameters:
attName - the name of the attribute

Returns: the attribute value string

Throws:
java.lang.ClassCastException - if attribute value is not a String

getId()

public java.lang.String getId()

The value of the tag’s id attribute.

Returns: the value of the tag’s id attribute, or null if no such attribute was specified.

setAttribute(String, Object)

public void setAttribute(java.lang.String attName, java.lang.Object value)

Set the value of an attribute.

Parameters:
attName - the name of the attribute

value - the value.

TagExtraInfo javax.servlet.jsp.tagext

setAttribute(String, Object)

2-134 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

TagExtraInfo
Declaration
public abstract class TagExtraInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagExtraInfo

Description
Optional class provided by the tag library author to describe additional translation-time information not
described in the TLD. The TagExtraInfo class is mentioned in the Tag Library Descriptor file (TLD).

This class can be used:

• to indicate that the tag defines scripting variables

• to perform translation-time validation of the tag attributes.

It is the responsibility of the JSP translator that the initial value to be returned by calls to getTagInfo()
corresponds to a TagInfo object for the tag being translated. If an explicit call to setTagInfo() is done, then the
object passed will be returned in subsequent calls to getTagInfo().

The only way to affect the value returned by getTagInfo() is through a setTagInfo() call, and thus,
TagExtraInfo.setTagInfo() is to be called by the JSP translator, with a TagInfo object that corresponds to the tag
being translated. The call should happen before any invocation on validate() and before any invocation on
getVariableInfo().

NOTE: It is a (translation time) error for a tag definition in a TLD with one or more variable subelements to
have an associated TagExtraInfo implementation that returns a VariableInfo array with one or more elements
from a call to getVariableInfo().

Member Summary

Constructors
TagExtraInfo()135

Methods
 TagInfo getTagInfo()135

 VariableInfo[] getVariableInfo(TagData data)135
 boolean isValid(TagData data)135

 void setTagInfo(TagInfo tagInfo)135
 ValidationMessage[] validate(TagData data)136

Inherited Member Summary

Methods inherited from class Object

javax.servlet.jsp.tagext TagExtraInfo

TagExtraInfo()

javax.servlet.jsp.tagext TagExtraInfo 2-135

Constructors

TagExtraInfo()

public TagExtraInfo()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

getTagInfo()

public final javax.servlet.jsp.tagext.TagInfo139 getTagInfo()

Get the TagInfo for this class.

Returns: the taginfo instance this instance is extending

getVariableInfo(TagData)

public javax.servlet.jsp.tagext.VariableInfo[]165
getVariableInfo(javax.servlet.jsp.tagext.TagData131 data)

information on scripting variables defined by the tag associated with this TagExtraInfo instance. Request-
time attributes are indicated as such in the TagData parameter.

Parameters:
data - The TagData instance.

Returns: An array of VariableInfo data, or null or a zero length array if no scripting variables are to be
defined.

isValid(TagData)

public boolean isValid(javax.servlet.jsp.tagext.TagData131 data)

Translation-time validation of the attributes. Request-time attributes are indicated as such in the TagData
parameter. Note that the preferred way to do validation is with the validate() method, since it can return
more detailed information.

Parameters:
data - The TagData instance.

Returns: Whether this tag instance is valid.

See Also: validate(TagData)136

setTagInfo(TagInfo)

public final void setTagInfo(javax.servlet.jsp.tagext.TagInfo139 tagInfo)

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Inherited Member Summary

TagExtraInfo javax.servlet.jsp.tagext

validate(TagData)

2-136 JavaServer Pages 2.1 Specification • May 2006

Set the TagInfo for this class.

Parameters:
tagInfo - The TagInfo this instance is extending

validate(TagData)

public javax.servlet.jsp.tagext.ValidationMessage[]163
validate(javax.servlet.jsp.tagext.TagData131 data)

Translation-time validation of the attributes. Request-time attributes are indicated as such in the TagData
parameter. Because of the higher quality validation messages possible, this is the preferred way to do
validation (although isValid() still works).

JSP 2.0 and higher containers call validate() instead of isValid(). The default implementation of this method
is to call isValid(). If isValid() returns false, a generic ValidationMessage[] is returned indicating isValid()
returned false.

Parameters:
data - The TagData instance.

Returns: A null object, or zero length array if no errors, an array of ValidationMessages otherwise.

Since: JSP 2.0

javax.servlet.jsp.tagext TagFileInfo

TagFileInfo(String, String, TagInfo)

javax.servlet.jsp.tagext TagFileInfo 2-137

javax.servlet.jsp.tagext

TagFileInfo
Declaration
public class TagFileInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagFileInfo

Description
Tag information for a tag file in a Tag Library; This class is instantiated from the Tag Library Descriptor file
(TLD) and is available only at translation time.

Since: JSP 2.0

Constructors

TagFileInfo(String, String, TagInfo)

public TagFileInfo(java.lang.String name, java.lang.String path,

javax.servlet.jsp.tagext.TagInfo139 tagInfo)

Constructor for TagFileInfo from data in the JSP 2.0 format for TLD. This class is to be instantiated only
from the TagLibrary code under request from some JSP code that is parsing a TLD (Tag Library
Descriptor). Note that, since TagLibibraryInfo reflects both TLD information and taglib directive

Member Summary

Constructors
TagFileInfo(java.lang.String name, java.lang.String path,
TagInfo tagInfo)137

Methods
 java.lang.String getName()138
 java.lang.String getPath()138

 TagInfo getTagInfo()138

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

TagFileInfo javax.servlet.jsp.tagext

getName()

2-138 JavaServer Pages 2.1 Specification • May 2006

information, a TagFileInfo instance is dependent on a taglib directive. This is probably a design error, which
may be fixed in the future.

Parameters:
name - The unique action name of this tag

path - Where to find the .tag file implementing this action, relative to the location of the TLD file.

tagInfo - The detailed information about this tag, as parsed from the directives in the tag file.

Methods

getName()

public java.lang.String getName()

The unique action name of this tag.

Returns: The (short) name of the tag.

getPath()

public java.lang.String getPath()

Where to find the .tag file implementing this action.

Returns: The path of the tag file, relative to the TLD, or “.” if the tag file was defined in an implicit tag file.

getTagInfo()

public javax.servlet.jsp.tagext.TagInfo139 getTagInfo()

Returns information about this tag, parsed from the directives in the tag file.

Returns: a TagInfo object containing information about this tag

javax.servlet.jsp.tagext TagInfo

getTagInfo()

javax.servlet.jsp.tagext TagInfo 2-139

javax.servlet.jsp.tagext

TagInfo
Declaration
public class TagInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagInfo

Description
Tag information for a tag in a Tag Library; This class is instantiated from the Tag Library Descriptor file (TLD)
and is available only at translation time.

Member Summary

Fields
static

java.lang.String
BODY_CONTENT_EMPTY140

static
java.lang.String

BODY_CONTENT_JSP140

static
java.lang.String

BODY_CONTENT_SCRIPTLESS140

static
java.lang.String

BODY_CONTENT_TAG_DEPENDENT140

Constructors
TagInfo(java.lang.String tagName, java.lang.String
tagClassName, java.lang.String bodycontent, java.lang.String
infoString, TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo)141
TagInfo(java.lang.String tagName, java.lang.String
tagClassName, java.lang.String bodycontent, java.lang.String
infoString, TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo, java.lang.String
displayName, java.lang.String smallIcon, java.lang.String
largeIcon, TagVariableInfo[] tvi)141
TagInfo(java.lang.String tagName, java.lang.String
tagClassName, java.lang.String bodycontent, java.lang.String
infoString, TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo, java.lang.String
displayName, java.lang.String smallIcon, java.lang.String
largeIcon, TagVariableInfo[] tvi, boolean
dynamicAttributes)142

Methods
 TagAttributeInfo[] getAttributes()142
 java.lang.String getBodyContent()143
 java.lang.String getDisplayName()143
 java.lang.String getInfoString()143
 java.lang.String getLargeIcon()143
 java.lang.String getSmallIcon()143

TagInfo javax.servlet.jsp.tagext

BODY_CONTENT_EMPTY

2-140 JavaServer Pages 2.1 Specification • May 2006

Fields

BODY_CONTENT_EMPTY

public static final java.lang.String BODY_CONTENT_EMPTY

Static constant for getBodyContent() when it is empty.

BODY_CONTENT_JSP

public static final java.lang.String BODY_CONTENT_JSP

Static constant for getBodyContent() when it is JSP.

BODY_CONTENT_SCRIPTLESS

public static final java.lang.String BODY_CONTENT_SCRIPTLESS

Static constant for getBodyContent() when it is scriptless.

Since: JSP 2.0

BODY_CONTENT_TAG_DEPENDENT

public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT

Static constant for getBodyContent() when it is Tag dependent.

 java.lang.String getTagClassName()143
 TagExtraInfo getTagExtraInfo()143

 TagLibraryInfo getTagLibrary()143
 java.lang.String getTagName()144
 TagVariableInfo[] getTagVariableInfos()144

 VariableInfo[] getVariableInfo(TagData data)144
 boolean hasDynamicAttributes()144
 boolean isValid(TagData data)144

 void setTagExtraInfo(TagExtraInfo tei)144
 void setTagLibrary(TagLibraryInfo tl)145

 ValidationMessage[] validate(TagData data)145

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

javax.servlet.jsp.tagext TagInfo

TagInfo(String, String, String, String, TagLibraryInfo, TagExtraInfo, TagAttributeInfo[])

javax.servlet.jsp.tagext TagInfo 2-141

Constructors

TagInfo(String, String, String, String, TagLibraryInfo, TagExtraInfo, TagAttributeInfo[])

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,

java.lang.String bodycontent, java.lang.String infoString,

javax.servlet.jsp.tagext.TagLibraryInfo146 taglib,

javax.servlet.jsp.tagext.TagExtraInfo134 tagExtraInfo,

javax.servlet.jsp.tagext.TagAttributeInfo[]126 attributeInfo)

Constructor for TagInfo from data in the JSP 1.1 format for TLD. This class is to be instantiated only from
the TagLibrary code under request from some JSP code that is parsing a TLD (Tag Library Descriptor).
Note that, since TagLibibraryInfo reflects both TLD information and taglib directive information, a TagInfo
instance is dependent on a taglib directive. This is probably a design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

TagInfo(String, String, String, String, TagLibraryInfo, TagExtraInfo, TagAttributeInfo[], String,
String, String, TagVariableInfo[])

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,

java.lang.String bodycontent, java.lang.String infoString,

javax.servlet.jsp.tagext.TagLibraryInfo146 taglib,

javax.servlet.jsp.tagext.TagExtraInfo134 tagExtraInfo,

javax.servlet.jsp.tagext.TagAttributeInfo[]126 attributeInfo,

java.lang.String displayName, java.lang.String smallIcon,

java.lang.String largeIcon,

javax.servlet.jsp.tagext.TagVariableInfo[]159 tvi)

Constructor for TagInfo from data in the JSP 1.2 format for TLD. This class is to be instantiated only from
the TagLibrary code under request from some JSP code that is parsing a TLD (Tag Library Descriptor).
Note that, since TagLibibraryInfo reflects both TLD information and taglib directive information, a TagInfo
instance is dependent on a taglib directive. This is probably a design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

TagInfo javax.servlet.jsp.tagext

TagInfo(String, String, String, String, TagLibraryInfo, TagExtraInfo, TagAttributeInfo[], String, String, String,

2-142 JavaServer Pages 2.1 Specification • May 2006

displayName - A short name to be displayed by tools

smallIcon - Path to a small icon to be displayed by tools

largeIcon - Path to a large icon to be displayed by tools

tvi - An array of a TagVariableInfo (or null)

TagInfo(String, String, String, String, TagLibraryInfo, TagExtraInfo, TagAttributeInfo[], String,
String, String, TagVariableInfo[], boolean)

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,

java.lang.String bodycontent, java.lang.String infoString,

javax.servlet.jsp.tagext.TagLibraryInfo146 taglib,

javax.servlet.jsp.tagext.TagExtraInfo134 tagExtraInfo,

javax.servlet.jsp.tagext.TagAttributeInfo[]126 attributeInfo,

java.lang.String displayName, java.lang.String smallIcon,

java.lang.String largeIcon,

javax.servlet.jsp.tagext.TagVariableInfo[]159 tvi,

boolean dynamicAttributes)

Constructor for TagInfo from data in the JSP 2.0 format for TLD. This class is to be instantiated only from
the TagLibrary code under request from some JSP code that is parsing a TLD (Tag Library Descriptor).
Note that, since TagLibibraryInfo reflects both TLD information and taglib directive information, a TagInfo
instance is dependent on a taglib directive. This is probably a design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

displayName - A short name to be displayed by tools

smallIcon - Path to a small icon to be displayed by tools

largeIcon - Path to a large icon to be displayed by tools

tvi - An array of a TagVariableInfo (or null)

dynamicAttributes - True if supports dynamic attributes

Since: JSP 2.0

Methods

getAttributes()

public javax.servlet.jsp.tagext.TagAttributeInfo[]126 getAttributes()

Attribute information (in the TLD) on this tag. The return is an array describing the attributes of this tag, as
indicated in the TLD.

javax.servlet.jsp.tagext TagInfo

getBodyContent()

javax.servlet.jsp.tagext TagInfo 2-143

Returns: The array of TagAttributeInfo for this tag, or a zero-length array if the tag has no attributes.

getBodyContent()

public java.lang.String getBodyContent()

The bodycontent information for this tag. If the bodycontent is not defined for this tag, the default of JSP
will be returned.

Returns: the body content string.

getDisplayName()

public java.lang.String getDisplayName()

Get the displayName.

Returns: A short name to be displayed by tools, or null if not defined

getInfoString()

public java.lang.String getInfoString()

The information string for the tag.

Returns: the info string, or null if not defined

getLargeIcon()

public java.lang.String getLargeIcon()

Get the path to the large icon.

Returns: Path to a large icon to be displayed by tools, or null if not defined

getSmallIcon()

public java.lang.String getSmallIcon()

Get the path to the small icon.

Returns: Path to a small icon to be displayed by tools, or null if not defined

getTagClassName()

public java.lang.String getTagClassName()

Name of the class that provides the handler for this tag.

Returns: The name of the tag handler class.

getTagExtraInfo()

public javax.servlet.jsp.tagext.TagExtraInfo134 getTagExtraInfo()

The instance (if any) for extra tag information.

Returns: The TagExtraInfo instance, if any.

getTagLibrary()

public javax.servlet.jsp.tagext.TagLibraryInfo146 getTagLibrary()

TagInfo javax.servlet.jsp.tagext

getTagName()

2-144 JavaServer Pages 2.1 Specification • May 2006

The instance of TabLibraryInfo we belong to.

Returns: the tag library instance we belong to

getTagName()

public java.lang.String getTagName()

The name of the Tag.

Returns: The (short) name of the tag.

getTagVariableInfos()

public javax.servlet.jsp.tagext.TagVariableInfo[]159 getTagVariableInfos()

Get TagVariableInfo objects associated with this TagInfo.

Returns: Array of TagVariableInfo objects corresponding to variables declared by this tag, or a zero length
array if no variables have been declared

getVariableInfo(TagData)

public javax.servlet.jsp.tagext.VariableInfo[]165
getVariableInfo(javax.servlet.jsp.tagext.TagData131 data)

Information on the scripting objects created by this tag at runtime. This is a convenience method on the
associated TagExtraInfo class.

Parameters:
data - TagData describing this action.

Returns: if a TagExtraInfo object is associated with this TagInfo, the result of
getTagExtraInfo().getVariableInfo(data), otherwise null.

hasDynamicAttributes()

public boolean hasDynamicAttributes()

Get dynamicAttributes associated with this TagInfo.

Returns: True if tag handler supports dynamic attributes

Since: JSP 2.0

isValid(TagData)

public boolean isValid(javax.servlet.jsp.tagext.TagData131 data)

Translation-time validation of the attributes. This is a convenience method on the associated TagExtraInfo
class.

Parameters:
data - The translation-time TagData instance.

Returns: Whether the data is valid.

setTagExtraInfo(TagExtraInfo)

public void setTagExtraInfo(javax.servlet.jsp.tagext.TagExtraInfo134 tei)

Set the instance for extra tag information.

javax.servlet.jsp.tagext TagInfo

setTagLibrary(TagLibraryInfo)

javax.servlet.jsp.tagext TagInfo 2-145

Parameters:
tei - the TagExtraInfo instance

setTagLibrary(TagLibraryInfo)

public void setTagLibrary(javax.servlet.jsp.tagext.TagLibraryInfo146 tl)

Set the TagLibraryInfo property. Note that a TagLibraryInfo element is dependent not just on the TLD
information but also on the specific taglib instance used. This means that a fair amount of work needs to be
done to construct and initialize TagLib objects. If used carefully, this setter can be used to avoid having to
create new TagInfo elements for each taglib directive.

Parameters:
tl - the TagLibraryInfo to assign

validate(TagData)

public javax.servlet.jsp.tagext.ValidationMessage[]163
validate(javax.servlet.jsp.tagext.TagData131 data)

Translation-time validation of the attributes. This is a convenience method on the associated TagExtraInfo
class.

Parameters:
data - The translation-time TagData instance.

Returns: A null object, or zero length array if no errors, an array of ValidationMessages otherwise.

Since: JSP 2.0

TagLibraryInfo javax.servlet.jsp.tagext

validate(TagData)

2-146 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

TagLibraryInfo
Declaration
public abstract class TagLibraryInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagLibraryInfo

Description
Translation-time information associated with a taglib directive, and its underlying TLD file. Most of the
information is directly from the TLD, except for the prefix and the uri values used in the taglib directive

Member Summary

Fields
protected

FunctionInfo[]
functions147

protected
java.lang.String

info147

protected
java.lang.String

jspversion147

protected
java.lang.String

prefix147

protected
java.lang.String

shortname147

protected
TagFileInfo[]

tagFiles147

protected TagInfo[] tags148
protected

java.lang.String
tlibversion148

protected
java.lang.String

uri148

protected
java.lang.String

urn148

Constructors
protected TagLibraryInfo(java.lang.String prefix, java.lang.String

uri)148

Methods
 FunctionInfo getFunction(java.lang.String name)148

 FunctionInfo[] getFunctions()148
 java.lang.String getInfoString()149
 java.lang.String getPrefixString()149
 java.lang.String getReliableURN()149
 java.lang.String getRequiredVersion()149
 java.lang.String getShortName()149

 TagInfo getTag(java.lang.String shortname)149
 TagFileInfo getTagFile(java.lang.String shortname)150

javax.servlet.jsp.tagext TagLibraryInfo

functions

javax.servlet.jsp.tagext TagLibraryInfo 2-147

Fields

functions

protected javax.servlet.jsp.tagext.FunctionInfo[]100 functions

An array describing the functions that are defined in this tag library.

Since: JSP 2.0

info

protected java.lang.String info

Information (documentation) for this TLD.

jspversion

protected java.lang.String jspversion

The version of the JSP specification this tag library is written to.

prefix

protected java.lang.String prefix

The prefix assigned to this taglib from the taglib directive.

shortname

protected java.lang.String shortname

The preferred short name (prefix) as indicated in the TLD.

tagFiles

protected javax.servlet.jsp.tagext.TagFileInfo[]137 tagFiles

An array describing the tag files that are defined in this tag library.

 TagFileInfo[] getTagFiles()150
abstract

TagLibraryInfo[]
getTagLibraryInfos()150

 TagInfo[] getTags()150
 java.lang.String getURI()150

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

TagLibraryInfo javax.servlet.jsp.tagext

tags

2-148 JavaServer Pages 2.1 Specification • May 2006

Since: JSP 2.0

tags

protected javax.servlet.jsp.tagext.TagInfo[]139 tags

An array describing the tags that are defined in this tag library.

tlibversion

protected java.lang.String tlibversion

The version of the tag library.

uri

protected java.lang.String uri

The value of the uri attribute from the taglib directive for this library.

urn

protected java.lang.String urn

The “reliable” URN indicated in the TLD.

Constructors

TagLibraryInfo(String, String)

protected TagLibraryInfo(java.lang.String prefix, java.lang.String uri)

Constructor.

Parameters:
prefix - the prefix actually used by the taglib directive

uri - the URI actually used by the taglib directive

Methods

getFunction(String)

public javax.servlet.jsp.tagext.FunctionInfo100 getFunction(java.lang.String name)

Get the FunctionInfo for a given function name, looking through all the functions in this tag library.

Parameters:
name - The name (no prefix) of the function

Returns: the FunctionInfo for the function with the given name, or null if no such function exists

Since: JSP 2.0

getFunctions()

public javax.servlet.jsp.tagext.FunctionInfo[]100 getFunctions()

javax.servlet.jsp.tagext TagLibraryInfo

getInfoString()

javax.servlet.jsp.tagext TagLibraryInfo 2-149

An array describing the functions that are defined in this tag library.

Returns: the functions defined in this tag library, or a zero length array if the tag library defines no
functions.

Since: JSP 2.0

getInfoString()

public java.lang.String getInfoString()

Information (documentation) for this TLD.

Returns: the info string for this tag lib

getPrefixString()

public java.lang.String getPrefixString()

The prefix assigned to this taglib from the taglib directive

Returns: the prefix assigned to this taglib from the taglib directive

getReliableURN()

public java.lang.String getReliableURN()

The “reliable” URN indicated in the TLD (the uri element). This may be used by authoring tools as a global
identifier to use when creating a taglib directive for this library.

Returns: a reliable URN to a TLD like this

getRequiredVersion()

public java.lang.String getRequiredVersion()

A string describing the required version of the JSP container.

Returns: the (minimal) required version of the JSP container.

See Also: javax.servlet.jsp.JspEngineInfo35

getShortName()

public java.lang.String getShortName()

The preferred short name (prefix) as indicated in the TLD. This may be used by authoring tools as the
preferred prefix to use when creating an taglib directive for this library.

Returns: the preferred short name for the library

getTag(String)

public javax.servlet.jsp.tagext.TagInfo139 getTag(java.lang.String shortname)

Get the TagInfo for a given tag name, looking through all the tags in this tag library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the TagInfo for the tag with the specified short name, or null if no such tag is found

TagLibraryInfo javax.servlet.jsp.tagext

getTagFile(String)

2-150 JavaServer Pages 2.1 Specification • May 2006

getTagFile(String)

public javax.servlet.jsp.tagext.TagFileInfo137 getTagFile(java.lang.String shortname)

Get the TagFileInfo for a given tag name, looking through all the tag files in this tag library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the TagFileInfo for the specified Tag file, or null if no Tag file is found

Since: JSP 2.0

getTagFiles()

public javax.servlet.jsp.tagext.TagFileInfo[]137 getTagFiles()

An array describing the tag files that are defined in this tag library.

Returns: the TagFileInfo objects corresponding to the tag files defined by this tag library, or a zero length
array if this tag library defines no tags files

Since: JSP 2.0

getTagLibraryInfos()

public abstract javax.servlet.jsp.tagext.TagLibraryInfo[]146 getTagLibraryInfos()

Returns an array of TagLibraryInfo objects representing the entire set of tag libraries (including this
TagLibraryInfo) imported by taglib directives in the translation unit that references this TagLibraryInfo. If a
tag library is imported more than once and bound to different prefices, only the TagLibraryInfo bound to the
first prefix must be included in the returned array.

Returns: Array of TagLibraryInfo objects representing the entire set of tag libraries (including this
TagLibraryInfo) imported by taglib directives in the translation unit that references this TagLibraryInfo.

Since: JSP 2.1

getTags()

public javax.servlet.jsp.tagext.TagInfo[]139 getTags()

An array describing the tags that are defined in this tag library.

Returns: the TagInfo objects corresponding to the tags defined by this tag library, or a zero length array if
this tag library defines no tags

getURI()

public java.lang.String getURI()

The value of the uri attribute from the taglib directive for this library.

Returns: the value of the uri attribute

javax.servlet.jsp.tagext TagLibraryValidator

getURI()

javax.servlet.jsp.tagext TagLibraryValidator 2-151

javax.servlet.jsp.tagext

TagLibraryValidator
Declaration
public abstract class TagLibraryValidator

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagLibraryValidator

Description
Translation-time validator class for a JSP page. A validator operates on the XML view associated with the JSP
page.

The TLD file associates a TagLibraryValidator class and some init arguments with a tag library.

The JSP container is reponsible for locating an appropriate instance of the appropriate subclass by

• new a fresh instance, or reuse an available one

• invoke the setInitParams(Map) method on the instance

once initialized, the validate(String, String, PageData) method will be invoked, where the first two arguments
are the prefix and uri for this tag library in the XML View. The prefix is intended to make it easier to produce an
error message. However, it is not always accurate. In the case where a single URI is mapped to more than one
prefix in the XML view, the prefix of the first URI is provided. Therefore, to provide high quality error messages
in cases where the tag elements themselves are checked, the prefix parameter should be ignored and the actual
prefix of the element should be used instead. TagLibraryValidators should always use the uri to identify
elements as beloning to the tag library, not the prefix.

A TagLibraryValidator instance may create auxiliary objects internally to perform the validation (e.g. an
XSchema validator) and may reuse it for all the pages in a given translation run.

The JSP container is not guaranteed to serialize invocations of validate() method, and TagLibraryValidators
should perform any synchronization they may require.

As of JSP 2.0, a JSP container must provide a jsp:id attribute to provide higher quality validation errors. The
container will track the JSP pages as passed to the container, and will assign to each element a unique “id”,
which is passed as the value of the jsp:id attribute. Each XML element in the XML view available will be
extended with this attribute. The TagLibraryValidator can then use the attribute in one or more
ValidationMessage objects. The container then, in turn, can use these values to provide more precise
information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map to the namespace http://
java.sun.com/JSP/Page. A TagLibraryValidator implementation must rely on the uri, not the prefix, of
the id attribute.

Member Summary

Constructors
TagLibraryValidator()152

Methods
 java.util.Map getInitParameters()152

TagLibraryValidator javax.servlet.jsp.tagext

TagLibraryValidator()

2-152 JavaServer Pages 2.1 Specification • May 2006

Constructors

TagLibraryValidator()

public TagLibraryValidator()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

Methods

getInitParameters()

public java.util.Map<java.lang.String,java.lang.Object> getInitParameters()

Get the init parameters data as an immutable Map. Parameter names are keys, and parameter values are the
values.

Returns: The init parameters as an immutable map.

release()

public void release()

Release any data kept by this instance for validation purposes.

setInitParameters(Map)

public void setInitParameters(java.util.Map<java.lang.String,java.lang.Object> map)

Set the init data in the TLD for this validator. Parameter names are keys, and parameter values are the
values.

Parameters:
map - A Map describing the init parameters

 void release()152
 void setInitParameters(java.util.Map<java.lang.String,java.lang.Ob

ject> map)152
 ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,

PageData page)153

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

javax.servlet.jsp.tagext TagLibraryValidator

validate(String, String, PageData)

javax.servlet.jsp.tagext TagLibraryValidator 2-153

validate(String, String, PageData)

public javax.servlet.jsp.tagext.ValidationMessage[]163 validate(java.lang.String prefix,

java.lang.String uri, javax.servlet.jsp.tagext.PageData109 page)

Validate a JSP page. This will get invoked once per unique tag library URI in the XML view. This method
will return null if the page is valid; otherwise the method should return an array of ValidationMessage
objects. An array of length zero is also interpreted as no errors.

Parameters:
prefix - the first prefix with which the tag library is associated, in the XML view. Note that some
tags may use a different prefix if the namespace is redefined.

uri - the tag library’s unique identifier

page - the JspData page object

Returns: A null object, or zero length array if no errors, an array of ValidationMessages otherwise.

TagSupport javax.servlet.jsp.tagext

validate(String, String, PageData)

2-154 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.tagext

TagSupport
Declaration
public class TagSupport implements IterationTag102, java.io.Serializable

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagSupport

All Implemented Interfaces: IterationTag102, JspTag108, java.io.Serializable,
Tag118

Direct Known Subclasses: BodyTagSupport95

Description
A base class for defining new tag handlers implementing Tag.

The TagSupport class is a utility class intended to be used as the base class for new tag handlers. The
TagSupport class implements the Tag and IterationTag interfaces and adds additional convenience methods
including getter methods for the properties in Tag. TagSupport has one static method that is included to facilitate
coordination among cooperating tags.

Many tag handlers will extend TagSupport and only redefine a few methods.

Member Summary

Fields
protected

java.lang.String
id155

protected
javax.servlet.jsp.Page

Context

pageContext155

Constructors
TagSupport()155

Methods
 int doAfterBody()155
 int doEndTag()156
 int doStartTag()156

static Tag findAncestorWithClass(Tag from, java.lang.Class klass)156
 java.lang.String getId()157

 Tag getParent()157
 java.lang.Object getValue(java.lang.String k)157

 java.util.Enumeration
<java.lang.String>

getValues()157

 void release()157
 void removeValue(java.lang.String k)157
 void setId(java.lang.String id)158
 void setPageContext(javax.servlet.jsp.PageContext pageContext)158

javax.servlet.jsp.tagext TagSupport

id

javax.servlet.jsp.tagext TagSupport 2-155

Fields

id

protected java.lang.String id

The value of the id attribute of this tag; or null.

pageContext

protected javax.servlet.jsp.PageContext56 pageContext

The PageContext.

Constructors

TagSupport()

public TagSupport()

Default constructor, all subclasses are required to define only a public constructor with the same signature,
and to call the superclass constructor. This constructor is called by the code generated by the JSP translator.

Methods

doAfterBody()

public int doAfterBody()

throws JspException

Default processing for a body.

 void setParent(Tag t)158
 void setValue(java.lang.String k, java.lang.Object o)158

Inherited Member Summary

Fields inherited from interface IterationTag102

EVAL_BODY_AGAIN104

Fields inherited from interface Tag118

EVAL_BODY_INCLUDE120, EVAL_PAGE120, SKIP_BODY120, SKIP_PAGE120

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

TagSupport javax.servlet.jsp.tagext

doEndTag()

2-156 JavaServer Pages 2.1 Specification • May 2006

Specified By: doAfterBody104 in interface IterationTag102

Returns: SKIP_BODY

Throws:
javax.servlet.jsp.JspException37 - if an error occurs while processing this tag

See Also: IterationTag.doAfterBody()104

doEndTag()

public int doEndTag()

throws JspException

Default processing of the end tag returning EVAL_PAGE.

Specified By: doEndTag120 in interface Tag118

Returns: EVAL_PAGE

Throws:
javax.servlet.jsp.JspException37 - if an error occurs while processing this tag

See Also: Tag.doEndTag()120

doStartTag()

public int doStartTag()

throws JspException

Default processing of the start tag, returning SKIP_BODY.

Specified By: doStartTag121 in interface Tag118

Returns: SKIP_BODY

Throws:
javax.servlet.jsp.JspException37 - if an error occurs while processing this tag

See Also: Tag.doStartTag()121

findAncestorWithClass(Tag, Class)

public static final javax.servlet.jsp.tagext.Tag118
findAncestorWithClass(javax.servlet.jsp.tagext.Tag118 from,

java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance. This method uses the getParent
method from the Tag interface. This method is used for coordination among cooperating tags.

The current version of the specification only provides one formal way of indicating the observable type of a
tag handler: its tag handler implementation class, described in the tag-class subelement of the tag element.
This is extended in an informal manner by allowing the tag library author to indicate in the description
subelement an observable type. The type should be a subtype of the tag handler implementation class or
void. This addititional constraint can be exploited by a specialized container that knows about that specific
tag library, as in the case of the JSP standard tag library.

When a tag library author provides information on the observable type of a tag handler, client programmatic
code should adhere to that constraint. Specifically, the Class passed to findAncestorWithClass should be a
subtype of the observable type.

javax.servlet.jsp.tagext TagSupport

getId()

javax.servlet.jsp.tagext TagSupport 2-157

Parameters:
from - The instance from where to start looking.

klass - The subclass of Tag or interface to be matched

Returns: the nearest ancestor that implements the interface or is an instance of the class specified

getId()

public java.lang.String getId()

The value of the id attribute of this tag; or null.

Returns: the value of the id attribute, or null

getParent()

public javax.servlet.jsp.tagext.Tag118 getParent()

The Tag instance most closely enclosing this tag instance.

Specified By: getParent121 in interface Tag118

Returns: the parent tag instance or null

See Also: Tag.getParent()121

getValue(String)

public java.lang.Object getValue(java.lang.String k)

Get a the value associated with a key.

Parameters:
k - The string key.

Returns: The value associated with the key, or null.

getValues()

public java.util.Enumeration<java.lang.String> getValues()

Enumerate the keys for the values kept by this tag handler.

Returns: An enumeration of all the keys for the values set, or null or an empty Enumeration if no values
have been set.

release()

public void release()

Release state.

Specified By: release122 in interface Tag118

See Also: Tag.release()122

removeValue(String)

public void removeValue(java.lang.String k)

Remove a value associated with a key.

TagSupport javax.servlet.jsp.tagext

setId(String)

2-158 JavaServer Pages 2.1 Specification • May 2006

Parameters:
k - The string key.

setId(String)

public void setId(java.lang.String id)

Set the id attribute for this tag.

Parameters:
id - The String for the id.

setPageContext(PageContext)

public void setPageContext(javax.servlet.jsp.PageContext56 pageContext)

Set the page context.

Specified By: setPageContext122 in interface Tag118

Parameters:
pageContext - The PageContext.

See Also: Tag.setPageContext(PageContext)122

setParent(Tag)

public void setParent(javax.servlet.jsp.tagext.Tag118 t)

Set the nesting tag of this tag.

Specified By: setParent122 in interface Tag118

Parameters:
t - The parent Tag.

See Also: Tag.setParent(Tag)122

setValue(String, Object)

public void setValue(java.lang.String k, java.lang.Object o)

Associate a value with a String key.

Parameters:
k - The key String.

o - The value to associate.

javax.servlet.jsp.tagext TagVariableInfo

TagVariableInfo(String, String, String, boolean, int)

javax.servlet.jsp.tagext TagVariableInfo 2-159

javax.servlet.jsp.tagext

TagVariableInfo
Declaration
public class TagVariableInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.TagVariableInfo

Description
Variable information for a tag in a Tag Library; This class is instantiated from the Tag Library Descriptor file
(TLD) and is available only at translation time. This object should be immutable. This information is only
available in JSP 1.2 format TLDs or above.

Constructors

TagVariableInfo(String, String, String, boolean, int)

public TagVariableInfo(java.lang.String nameGiven, java.lang.String nameFromAttribute,

java.lang.String className, boolean declare, int scope)

Constructor for TagVariableInfo.

Parameters:
nameGiven - value of <name-given>

Member Summary

Constructors
TagVariableInfo(java.lang.String nameGiven, java.lang.String
nameFromAttribute, java.lang.String className, boolean
declare, int scope)159

Methods
 java.lang.String getClassName()160

 boolean getDeclare()160
 java.lang.String getNameFromAttribute()160
 java.lang.String getNameGiven()160

 int getScope()160

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

TagVariableInfo javax.servlet.jsp.tagext

getClassName()

2-160 JavaServer Pages 2.1 Specification • May 2006

nameFromAttribute - value of <name-from-attribute>

className - value of <variable-class>

declare - value of <declare>

scope - value of <scope>

Methods

getClassName()

public java.lang.String getClassName()

The body of the <variable-class> element.

Returns: The name of the class of the variable or ’java.lang.String’ if not defined in the TLD.

getDeclare()

public boolean getDeclare()

The body of the <declare> element.

Returns: Whether the variable is to be declared or not. If not defined in the TLD, ’true’ will be returned.

getNameFromAttribute()

public java.lang.String getNameFromAttribute()

The body of the <name-from-attribute> element. This is the name of an attribute whose (translation-time)
value will give the name of the variable. One of <name-given> or <name-from-attribute> is required.

Returns: The attribute whose value defines the variable name

getNameGiven()

public java.lang.String getNameGiven()

The body of the <name-given> element.

Returns: The variable name as a constant

getScope()

public int getScope()

The body of the <scope> element.

Returns: The scope to give the variable. NESTED scope will be returned if not defined in the TLD.

javax.servlet.jsp.tagext TryCatchFinally

doCatch(Throwable)

javax.servlet.jsp.tagext TryCatchFinally 2-161

javax.servlet.jsp.tagext

TryCatchFinally
Declaration
public interface TryCatchFinally

Description
The auxiliary interface of a Tag, IterationTag or BodyTag tag handler that wants additional hooks for managing
resources.

This interface provides two new methods: doCatch(Throwable) and doFinally(). The prototypical invocation is
as follows:

h = get a Tag(); // get a tag handler, perhaps from pool
h.setPageContext(pc); // initialize as desired
h.setParent(null);
h.setFoo(“foo”);

// tag invocation protocol; see Tag.java
try {

doStartTag()...
....
doEndTag()...

} catch (Throwable t) {
// react to exceptional condition
h.doCatch(t);

} finally {
// restore data invariants and release per-invocation resources
h.doFinally();

}

... other invocations perhaps with some new setters

...
h.release(); // release long-term resources

Methods

doCatch(Throwable)

public void doCatch(java.lang.Throwable t)

throws Throwable

Invoked if a Throwable occurs while evaluating the BODY inside a tag or in any of the following methods:
Tag.doStartTag(), Tag.doEndTag(), IterationTag.doAfterBody() and BodyTag.doInitBody().

This method is not invoked if the Throwable occurs during one of the setter methods.

Member Summary

Methods
 void doCatch(java.lang.Throwable t)161
 void doFinally()162

TryCatchFinally javax.servlet.jsp.tagext

doFinally()

2-162 JavaServer Pages 2.1 Specification • May 2006

This method may throw an exception (the same or a new one) that will be propagated further up the nest
chain. If an exception is thrown, doFinally() will be invoked.

This method is intended to be used to respond to an exceptional condition.

Parameters:
t - The throwable exception navigating through this tag.

Throws:
java.lang.Throwable - if the exception is to be rethrown further up the nest chain.

doFinally()

public void doFinally()

Invoked in all cases after doEndTag() for any class implementing Tag, IterationTag or BodyTag. This
method is invoked even if an exception has occurred in the BODY of the tag, or in any of the following
methods: Tag.doStartTag(), Tag.doEndTag(), IterationTag.doAfterBody() and BodyTag.doInitBody().

This method is not invoked if the Throwable occurs during one of the setter methods.

This method should not throw an Exception.

This method is intended to maintain per-invocation data integrity and resource management actions.

javax.servlet.jsp.tagext ValidationMessage

ValidationMessage(String, String)

javax.servlet.jsp.tagext ValidationMessage 2-163

javax.servlet.jsp.tagext

ValidationMessage
Declaration
public class ValidationMessage

java.lang.Object
|
+--javax.servlet.jsp.tagext.ValidationMessage

Description
A validation message from either TagLibraryValidator or TagExtraInfo.

As of JSP 2.0, a JSP container must support a jsp:id attribute to provide higher quality validation errors. The
container will track the JSP pages as passed to the container, and will assign to each element a unique “id”,
which is passed as the value of the jsp:id attribute. Each XML element in the XML view available will be
extended with this attribute. The TagLibraryValidator can then use the attribute in one or more
ValidationMessage objects. The container then, in turn, can use these values to provide more precise
information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map to the namespace http://
java.sun.com/JSP/Page. A TagLibraryValidator implementation must rely on the uri, not the prefix, of
the id attribute.

Constructors

ValidationMessage(String, String)

public ValidationMessage(java.lang.String id, java.lang.String message)

Member Summary

Constructors
ValidationMessage(java.lang.String id, java.lang.String
message)163

Methods
 java.lang.String getId()164
 java.lang.String getMessage()164

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

ValidationMessage javax.servlet.jsp.tagext

getId()

2-164 JavaServer Pages 2.1 Specification • May 2006

Create a ValidationMessage. The message String should be non-null. The value of id may be null, if the
message is not specific to any XML element, or if no jsp:id attributes were passed on. If non-null, the value
of id must be the value of a jsp:id attribute for the PageData passed into the validate() method.

Parameters:
id - Either null, or the value of a jsp:id attribute.

message - A localized validation message.

Methods

getId()

public java.lang.String getId()

Get the jsp:id. Null means that there is no information available.

Returns: The jsp:id information.

getMessage()

public java.lang.String getMessage()

Get the localized validation message.

Returns: A validation message

javax.servlet.jsp.tagext VariableInfo

getMessage()

javax.servlet.jsp.tagext VariableInfo 2-165

javax.servlet.jsp.tagext

VariableInfo
Declaration
public class VariableInfo

java.lang.Object
|
+--javax.servlet.jsp.tagext.VariableInfo

Description
Information on the scripting variables that are created/modified by a tag (at run-time). This information is
provided by TagExtraInfo classes and it is used by the translation phase of JSP.

Scripting variables generated by a custom action have an associated scope of either AT_BEGIN, NESTED, or
AT_END.

The class name (VariableInfo.getClassName) in the returned objects is used to determine the types of the
scripting variables. Note that because scripting variables are assigned their values from scoped attributes which
cannot be of primitive types, “boxed” types such as java.lang.Integer must be used instead of
primitives.

The class name may be a Fully Qualified Class Name, or a short class name.

If a Fully Qualified Class Name is provided, it should refer to a class that should be in the CLASSPATH for the
Web Application (see Servlet 2.4 specification - essentially it is WEB-INF/lib and WEB-INF/classes). Failure to
be so will lead to a translation-time error.

If a short class name is given in the VariableInfo objects, then the class name must be that of a public class in the
context of the import directives of the page where the custom action appears. The class must also be in the
CLASSPATH for the Web Application (see Servlet 2.4 specification - essentially it is WEB-INF/lib and WEB-
INF/classes). Failure to be so will lead to a translation-time error.

Usage Comments

Frequently a fully qualified class name will refer to a class that is known to the tag library and thus, delivered in
the same JAR file as the tag handlers. In most other remaining cases it will refer to a class that is in the platform
on which the JSP processor is built (like Java EE). Using fully qualified class names in this manner makes the
usage relatively resistant to configuration errors.

A short name is usually generated by the tag library based on some attributes passed through from the custom
action user (the author), and it is thus less robust: for instance a missing import directive in the referring JSP
page will lead to an invalid short name class and a translation error.

Synchronization Protocol

The result of the invocation on getVariableInfo is an array of VariableInfo objects. Each such object describes a
scripting variable by providing its name, its type, whether the variable is new or not, and what its scope is.
Scope is best described through a picture:

VariableInfo javax.servlet.jsp.tagext

getMessage()

2-166 JavaServer Pages 2.1 Specification • May 2006

The JSP 2.0 specification defines the interpretation of 3 values:

• NESTED, if the scripting variable is available between the start tag and the end tag of the action that
defines it.

• AT_BEGIN, if the scripting variable is available from the start tag of the action that defines it until the end
of the scope.

• AT_END, if the scripting variable is available after the end tag of the action that defines it until the end of
the scope.

The scope value for a variable implies what methods may affect its value and thus where synchronization is
needed as illustrated by the table below. Note: the synchronization of the variable(s) will occur after the
respective method has been called.

1 Called after doStartTag() if EVAL_BODY_INCLUDE is returned, or after doInitBody() otherwise.

Variable Information in the TLD

Scripting variable information can also be encoded directly for most cases into the Tag Library Descriptor using
the <variable> subelement of the <tag> element. See the JSP specification.

Variable Synchronization Points

doStartTag() doInitBody() doAfterBody() doEndTag() doTag()

Tag AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

IterationTag AT_BEGIN,
NESTED

AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

BodyTag AT_BEGIN,
NESTED1

AT_BEGIN,
NESTED1

AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

SimpleTag AT_BEGIN,
AT_END

javax.servlet.jsp.tagext VariableInfo

AT_BEGIN

javax.servlet.jsp.tagext VariableInfo 2-167

Fields

AT_BEGIN

public static final int AT_BEGIN

Scope information that scripting variable is visible after start tag.

AT_END

public static final int AT_END

Scope information that scripting variable is visible after end tag.

NESTED

public static final int NESTED

Scope information that scripting variable is visible only within the start/end tags.

Constructors

VariableInfo(String, String, boolean, int)

public VariableInfo(java.lang.String varName, java.lang.String className,

boolean declare, int scope)

Constructor These objects can be created (at translation time) by the TagExtraInfo instances.

Member Summary

Fields
static int AT_BEGIN167
static int AT_END167
static int NESTED167

Constructors
VariableInfo(java.lang.String varName, java.lang.String
className, boolean declare, int scope)167

Methods
 java.lang.String getClassName()168

 boolean getDeclare()168
 int getScope()168

 java.lang.String getVarName()168

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

VariableInfo javax.servlet.jsp.tagext

getClassName()

2-168 JavaServer Pages 2.1 Specification • May 2006

Parameters:
varName - The name of the scripting variable

className - The type of this variable

declare - If true, it is a new variable (in some languages this will require a declaration)

scope - Indication on the lexical scope of the variable

Methods

getClassName()

public java.lang.String getClassName()

Returns the type of this variable.

Returns: the type of this variable

getDeclare()

public boolean getDeclare()

Returns whether this is a new variable. If so, in some languages this will require a declaration.

Returns: whether this is a new variable.

getScope()

public int getScope()

Returns the lexical scope of the variable.

Returns: the lexical scope of the variable, either AT_BEGIN, AT_END, or NESTED.

See Also: AT_BEGIN167, AT_END167, NESTED167

getVarName()

public java.lang.String getVarName()

Returns the name of the scripting variable.

Returns: the name of the scripting variable

2-169

JSP.14
Expression Language API

This chapter describes the javax.servlet.jsp.el package. The chapter includes
content that is generated automatically from Javadoc embedded into the actual Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

Please note that as of JSP 2.1, all classes and interfaces that were in
package javax.servlet.jsp.el have been deprecated in favor of the new unified
Expression Language APIs (javax.el). See the Expression Language
specification document for more details.

While a JSP container must still support the deprecated APIs defined in
javax.servlet.jsp.el, developers should only rely on the new javax.el APIs for
new development work.

Please note also that while all old APIs in package javax.servlet.jsp.el have
been deprecated, the package also features two new classes for the integration of
JSP with the new unified EL APIs. These are two ELResolver classes that
implement object resolution rules that must be supported by a JSP container with
the new unified Expression Language:
javax.servlet.jsp.el.ImplicitObjectELResolver and
javax.servlet.jsp.el.ScopedAttributeELResolver.

EXPRESSION LANGUAGE API2-170

JavaServer Pages 2.1 Specification

javax.servlet.jsp.el 2-171

Package

javax.servlet.jsp.el
Description
Provides the ELResolver classes that define the object resolution rules that must be supported by a JSP
container with the new unified Expression Language.

The package also defines programmatic access to the old Expression Language evaluator (pre JSP 2.1).

Please note that as of JSP 2.1, all classes and interfaces that were in package javax.servlet.jsp.el
have been deprecated in favor of the new unified Expression Language APIs
(javax.el). See the Expression Language specification document for more
details.

While a JSP container must still support the deprecated APIs defined in javax.servlet.jsp.el,
developers should only rely on the new javax.el APIs for new development
work.

Two ELResolver classes have been added in JSP 2.1 to implement object resolution rules that must be supported
by a JSP container with the new unified Expression Language: ImplicitObjectELResolver184 and
ScopedAttributeELResolver189.

Documentation on the old and deprecated API
The JavaServer Pages(tm) (JSP) 2.0 specification provides a portable API for evaluating “EL Expressions”. As
of JSP 2.0, EL expressions can be placed directly in the template text of JSP pages and tag files.

This package contains a number of classes and interfaces that describe and define programmatic access to the
Expression Language evaluator. This API can also be used by an implementation of JSP to evaluate the
expressions, but other implementations, like open-coding into Java bytecodes, are allowed. This package is
intended to have no dependencies on other portions of the JSP 2.0 specification.

Expression Evaluator
Programmatic access to the EL Expression Evaluator is provided through the following types:

• ExpressionEvaluator

• Expression

• FunctionMapper

• VariableResolver

An ExpressionEvaluator object can be obtained from a JspContext object through the
getExpressionEvaluator method. An ExpressionEvaluator encapsulates the EL processor. An EL
expression provided as a String can then be evaluated directly, or it can be parsed first into an Expression
object. The parse step, can be used to factor out the cost of parsing the expression, or even the cost of optimizing
the implementation.

The parsing of an expression string is done against a target type, a default prefix (that applies when a function
has no prefix), and a FunctionMapper. The FunctionMapper object maps a prefix and a local name part
into a java.lang.reflect.Method object.

The interpretation or evaluation of a parsed expression is done using a VariableResolver object. This
object resolves top level object names into Objects. A VariableResolver can be obtained from a
JspContext object through the getVariableResolver method.

javax.servlet.jsp.el

2-172 JavaServer Pages 2.1 Specification • May 2006

Exceptions
The ELException exception is used by the expression language to denote any exception that may arise
during the parsing or evaluation of an expression. The ELParseException exception is a subclass of
ELException that corresponds to parsing errors

Parsing errors are conveyed as exceptions to simplify the API. It is expected that many JSP containers will use
additional mechanisms to parse EL expressions and report their errors - a run-time API cannot provide accurate
line-error numbers without additional machinery.

Code Fragment
Below is a non-normative code fragment outlining how the APIs can be used.

// Get an instance of an ExpressionEvaluator
ExpressionEvaluator ee = myJspContext.getExpressionEvaluator();
VariableResolver vr = myJspContext.getVariableResolver();
FunctionMapper fm; // we don't have a portable implementation yet
// Example of compiling an expression. See [ISSUE-2]
// Errors detected this way may have higher quality than those
// found with a simple validate() invocation.
ExpressionCompilation ce;
try {
ce = ee.prepareExpression(expr,

targetClass,
fm,
null // no prefixes
);

} catch (ELParseException e) {
log (e.getMessage());

}
try {
ce.evaluate(vr);

} catch (ElException e) {
log (e);

}

Class Summary

Interfaces

FunctionMapper183 The interface to a map between EL function names and methods.

VariableResolver194 This class is used to customize the way an ExpressionEvaluator resolves variable
references at evaluation time.

Classes

Expression178 The abstract class for a prepared expression.

ExpressionEvaluator180 The abstract base class for an expression-language evaluator.

ImplicitObjectELResolv
er184

Defines variable resolution behavior for the EL implicit objects defined in the JSP
specification.

ScopedAttributeELResol
ver189

Defines variable resolution behavior for scoped attributes.

Exceptions

ELException174 Represents any of the exception conditions that arise during the operation evaluation of
the evaluator.

javax.servlet.jsp.el

javax.servlet.jsp.el 2-173

ELParseException176 Represents a parsing error encountered while parsing an EL expression.

Class Summary

ELException javax.servlet.jsp.el

2-174 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

ELException
Declaration
public class ELException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.servlet.jsp.el.ELException

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: ELParseException176

Deprecated. As of JSP 2.1, replaced by javax.el.ELException

Description
Represents any of the exception conditions that arise during the operation evaluation of the evaluator.

Since: JSP 2.0

Member Summary

Constructors
ELException()175
ELException(java.lang.String pMessage)175
ELException(java.lang.String pMessage, java.lang.Throwable
pRootCause)175
ELException(java.lang.Throwable pRootCause)175

Methods
 java.lang.Throwable getRootCause()175

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

javax.servlet.jsp.el ELException

ELException()

javax.servlet.jsp.el ELException 2-175

Constructors

ELException()

public ELException()

Creates an ELException with no detail message.

ELException(String)

public ELException(java.lang.String pMessage)

Creates an ELException with the provided detail message.

Parameters:
pMessage - the detail message

ELException(Throwable)

public ELException(java.lang.Throwable pRootCause)

Creates an ELException with the given root cause.

Parameters:
pRootCause - the originating cause of this exception

ELException(String, Throwable)

public ELException(java.lang.String pMessage, java.lang.Throwable pRootCause)

Creates an ELException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception

Methods

getRootCause()

public java.lang.Throwable getRootCause()

Returns the root cause.

Returns: the root cause of this exception

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

Inherited Member Summary

ELParseException javax.servlet.jsp.el

getRootCause()

2-176 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

ELParseException
Declaration
public class ELParseException extends ELException174

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.servlet.jsp.el.ELException174

|
+--javax.servlet.jsp.el.ELParseException

All Implemented Interfaces: java.io.Serializable

Deprecated. As of JSP 2.1, replaced by javax.el.ELException

Description
Represents a parsing error encountered while parsing an EL expression.

Since: JSP 2.0

Member Summary

Constructors
ELParseException()177
ELParseException(java.lang.String pMessage)177

Inherited Member Summary

Methods inherited from interface ELException174

getRootCause()175

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

javax.servlet.jsp.el ELParseException

ELParseException()

javax.servlet.jsp.el ELParseException 2-177

Constructors

ELParseException()

public ELParseException()

Creates an ELParseException with no detail message.

ELParseException(String)

public ELParseException(java.lang.String pMessage)

Creates an ELParseException with the provided detail message.

Parameters:
pMessage - the detail message

Expression javax.servlet.jsp.el

Expression()

2-178 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

Expression
Declaration
public abstract class Expression

java.lang.Object
|
+--javax.servlet.jsp.el.Expression

Deprecated. As of JSP 2.1, replaced by javax.el.ValueExpression

Description
The abstract class for a prepared expression.

An instance of an Expression can be obtained via from an ExpressionEvaluator instance.

An Expression may or not have done a syntactic parse of the expression. A client invoking the evaluate()
method should be ready for the case where ELParseException exceptions are raised.

Since: JSP 2.0

Constructors

Expression()

public Expression()

Member Summary

Constructors
Expression()178

Methods
abstract

java.lang.Object
evaluate(VariableResolver vResolver)179

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

javax.servlet.jsp.el Expression

evaluate(VariableResolver)

javax.servlet.jsp.el Expression 2-179

Methods

evaluate(VariableResolver)

public abstract java.lang.Object evaluate(javax.servlet.jsp.el.VariableResolver194
vResolver)

throws ELException

Evaluates an expression that was previously prepared. In some implementations preparing an expression
involves full syntactic validation, but others may not do so. Evaluating the expression may raise an
ELParseException as well as other ELExceptions due to run-time evaluation.

Parameters:
vResolver - A VariableResolver instance that can be used at runtime to resolve the name of implicit
objects into Objects.

Returns: The result of the expression evaluation.

Throws:
ELException174 - Thrown if the expression evaluation failed.

ExpressionEvaluator javax.servlet.jsp.el

evaluate(VariableResolver)

2-180 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

ExpressionEvaluator
Declaration
public abstract class ExpressionEvaluator

java.lang.Object
|
+--javax.servlet.jsp.el.ExpressionEvaluator

Deprecated. As of JSP 2.1, replaced by javax.el.ExpressionFactory

Description
The abstract base class for an expression-language evaluator. Classes that implement an expression language
expose their functionality via this abstract class.

An instance of the ExpressionEvaluator can be obtained via the JspContext / PageContext

The parseExpression() and evaluate() methods must be thread-safe. That is, multiple threads may call these
methods on the same ExpressionEvaluator object simultaneously. Implementations should synchronize access if
they depend on transient state. Implementations should not, however, assume that only one object of each
ExpressionEvaluator type will be instantiated; global caching should therefore be static.

Only a single EL expression, starting with ’${’ and ending with ’}’, can be parsed or evaluated at a time. EL
expressions cannot be mixed with static text. For example, attempting to parse or evaluate
“abc${1+1}def${1+1}ghi” or even “${1+1}${1+1}” will cause an ELException to be thrown.

The following are examples of syntactically legal EL expressions:

• ${person.lastName}

• ${8 * 8}

• ${my:reverse('hello')}

Since: JSP 2.0

Member Summary

Constructors
ExpressionEvaluator()181

Methods
abstract

java.lang.Object
evaluate(java.lang.String expression, java.lang.Class
expectedType, VariableResolver vResolver, FunctionMapper
fMapper)181

abstract Expression parseExpression(java.lang.String expression, java.lang.Class
expectedType, FunctionMapper fMapper)181

javax.servlet.jsp.el ExpressionEvaluator

ExpressionEvaluator()

javax.servlet.jsp.el ExpressionEvaluator 2-181

Constructors

ExpressionEvaluator()

public ExpressionEvaluator()

Methods

evaluate(String, Class, VariableResolver, FunctionMapper)

public abstract java.lang.Object evaluate(java.lang.String expression,

java.lang.Class expectedType,

javax.servlet.jsp.el.VariableResolver194 vResolver,

javax.servlet.jsp.el.FunctionMapper183 fMapper)

throws ELException

Evaluates an expression. This method may perform some syntactic validation and, if so, it should raise an
ELParseException error if it encounters syntactic errors. EL evaluation errors should cause an ELException
to be raised.

Parameters:
expression - The expression to be evaluated.

expectedType - The expected type of the result of the evaluation

vResolver - A VariableResolver instance that can be used at runtime to resolve the name of implicit
objects into Objects.

fMapper - A FunctionMapper to resolve functions found in the expression. It can be null, in which
case no functions are supported for this invocation.

Returns: The result of the expression evaluation.

Throws:
ELException174 - Thrown if the expression evaluation failed.

parseExpression(String, Class, FunctionMapper)

public abstract javax.servlet.jsp.el.Expression178 parseExpression(java.lang.String

expression, java.lang.Class expectedType,

javax.servlet.jsp.el.FunctionMapper183 fMapper)

throws ELException

Prepare an expression for later evaluation. This method should perform syntactic validation of the
expression; if in doing so it detects errors, it should raise an ELParseException.

Parameters:
expression - The expression to be evaluated.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

ExpressionEvaluator javax.servlet.jsp.el

parseExpression(String, Class, FunctionMapper)

2-182 JavaServer Pages 2.1 Specification • May 2006

expectedType - The expected type of the result of the evaluation

fMapper - A FunctionMapper to resolve functions found in the expression. It can be null, in which
case no functions are supported for this invocation. The ExpressionEvaluator must not hold on to the
FunctionMapper reference after returning from parseExpression(). The Expression object
returned must invoke the same functions regardless of whether the mappings in the provided
FunctionMapper instance change between calling
ExpressionEvaluator.parseExpression() and Expression.evaluate().

Returns: The Expression object encapsulating the arguments.

Throws:
ELException174 - Thrown if parsing errors were found.

javax.servlet.jsp.el FunctionMapper

resolveFunction(String, String)

javax.servlet.jsp.el FunctionMapper 2-183

javax.servlet.jsp.el

FunctionMapper
Declaration
public interface FunctionMapper

Deprecated. As of JSP 2.1, replaced by javax.el.FunctionMapper

Description
The interface to a map between EL function names and methods.

Classes implementing this interface may, for instance, consult tag library information to resolve the map.

Since: JSP 2.0

Methods

resolveFunction(String, String)

public java.lang.reflect.Method resolveFunction(java.lang.String prefix,

java.lang.String localName)

Resolves the specified local name and prefix into a Java.lang.Method. Returns null if the prefix and local
name are not found.

Parameters:
prefix - the prefix of the function, or “” if no prefix.

localName - the short name of the function

Returns: the result of the method mapping. Null means no entry found.

Member Summary

Methods

java.lang.reflect.Meth
od

resolveFunction(java.lang.String prefix, java.lang.String
localName)183

ImplicitObjectELResolver javax.servlet.jsp.el

resolveFunction(String, String)

2-184 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

ImplicitObjectELResolver
Declaration
public class ImplicitObjectELResolver extends javax.el.ELResolver

java.lang.Object
|
+--javax.el.ELResolver

|
+--javax.servlet.jsp.el.ImplicitObjectELResolver

Description
Defines variable resolution behavior for the EL implicit objects defined in the JSP specification.

The following variables are resolved by this ELResolver, as per the JSP specification:

• pageContext - the PageContext object.

• pageScope - a Map that maps page-scoped attribute names to their values.

• requestScope - a Map that maps request-scoped attribute names to their values.

• sessionScope - a Map that maps session-scoped attribute names to their values.

• applicationScope - a Map that maps application-scoped attribute names to their values.

• param - a Map that maps parameter names to a single String parameter value (obtained by calling
ServletRequest.getParameter(String name)).

• paramValues - a Map that maps parameter names to a String[] of all values
for that parameter (obtained by calling
ServletRequest.getParameterValues(String name)).

• header - a Map that maps header names to a single String header value
(obtained by calling HttpServletRequest.getHeader(String name)).

• headerValues - a Map that maps header names to a String[] of all values for
that header (obtained by calling
HttpServletRequest.getHeaders(String)).

• cookie - a Map that maps cookie names to a single Cookie object. Cookies
are retrieved according to the semantics of
HttpServletRequest.getCookies(). If the same name is shared by multiple
cookies, an implementation must use the first one encountered in the
array of Cookie objects returned by the getCookies() method. However,
users of the cookie implicit object must be aware that the ordering of
cookies is currently unspecified in the servlet specification.

• initParam - a Map that maps context initialization parameter names to their
String parameter value (obtained by calling
ServletContext.getInitParameter(String name)).

Since: JSP 2.1

javax.servlet.jsp.el ImplicitObjectELResolver

ImplicitObjectELResolver()

javax.servlet.jsp.el ImplicitObjectELResolver 2-185

See Also: javax.el.ELResolver

Constructors

ImplicitObjectELResolver()

public ImplicitObjectELResolver()

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class<java.lang.String> getCommonPropertyType(javax.el.ELContext

context, java.lang.Object base)

If the base object is null, returns String.class. Otherwise, returns null.

Overrides: getCommonPropertyType in class ELResolver

Member Summary

Constructors
ImplicitObjectELResolver()185

Methods
 java.lang.Class

<java.lang.String>
getCommonPropertyType(javax.el.ELContext context,
java.lang.Object base)185

 java.util.Iterator
<java.beans.FeatureDes

criptor>

getFeatureDescriptors(javax.el.ELContext context,
java.lang.Object base)186

 java.lang.Class getType(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)186

 java.lang.Object getValue(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)187

 boolean isReadOnly(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)187

 void setValue(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property, java.lang.Object val)188

Inherited Member Summary

Fields inherited from class ELResolver

RESOLVABLE_AT_DESIGN_TIME, TYPE

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

ImplicitObjectELResolver javax.servlet.jsp.el

getFeatureDescriptors(ELContext, Object)

2-186 JavaServer Pages 2.1 Specification • May 2006

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in a null return value.

Returns: null if base is not null; otherwise String.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator<java.beans.FeatureDescriptor>

getFeatureDescriptors(javax.el.ELContext context, java.lang.Object base)

If the base object is null, and the property matches the name of a JSP implicit object, returns an
Iterator containing FeatureDescriptor objects with information about each JSP implicit object
resolved by this resolver. Otherwise, returns null.

The Iterator returned must contain one instance of java.beans.FeatureDescriptor for each
of the EL implicit objects defined by the JSP spec. Each info object contains information about a single
implicit object, and is initialized as follows:

displayName - The name of the implicit object. name - Same as displayName property. shortDescription -
A suitable description for the implicit object. Will vary by implementation. expert - false hidden -
false preferred - true

In addition, the following named attributes must be set in the returned FeatureDescriptors:

javax.el.ELResolver.TYPE - The runtime type of the implicit object.
javax.el.ELResolver.RESOLVABLE_AT_DESIGN_TIME - true.

Overrides: getFeatureDescriptors in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in a null return value.

Returns: An Iterator containing one FeatureDescriptor object for each implicit object, or
null if base is not null.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property)

If the base object is null, and the property matches the name of a JSP implicit object, returns null to
indicate that no types are ever accepted to setValue().

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if an implicit object is matched. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: getType in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the implicit object to resolve.

Returns: If the propertyResolved property of ELContext was set to true, then null; otherwise
undefined.

javax.servlet.jsp.el ImplicitObjectELResolver

getValue(ELContext, Object, Object)

javax.servlet.jsp.el ImplicitObjectELResolver 2-187

Throws:
java.lang.NullPointerException - if context is null

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property)

If the base object is null, and the property matches the name of a JSP implicit object, returns the implicit
object.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if an implicit object is matched. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: getValue in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the implicit object to resolve.

Returns: If the propertyResolved property of ELContext was set to true, then the implicit
object; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property)

If the base object is null, and the property matches the name of a JSP implicit object, returns true to
indicate that implicit objects cannot be overwritten.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if an implicit object is matched. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: isReadOnly in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the implicit object.

Returns: If the propertyResolved property of ELContext was set to true, then true; otherwise
undefined.

Throws:
java.lang.NullPointerException - if context is null.

ImplicitObjectELResolver javax.servlet.jsp.el

setValue(ELContext, Object, Object, Object)

2-188 JavaServer Pages 2.1 Specification • May 2006

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is null, and the property matches the name of a JSP implicit object, throws
PropertyNotWritableException to indicate that implicit objects cannot be overwritten.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if an implicit object is matched. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: setValue in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the implicit object.

val - The value to be associated with the implicit object.

Throws:
java.lang.NullPointerException - if context is null.

javax.el.PropertyNotWritableException - always thrown, if the implicit object name is
recognized by this resolver.

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

javax.servlet.jsp.el ScopedAttributeELResolver

setValue(ELContext, Object, Object, Object)

javax.servlet.jsp.el ScopedAttributeELResolver 2-189

javax.servlet.jsp.el

ScopedAttributeELResolver
Declaration
public class ScopedAttributeELResolver extends javax.el.ELResolver

java.lang.Object
|
+--javax.el.ELResolver

|
+--javax.servlet.jsp.el.ScopedAttributeELResolver

Description
Defines variable resolution behavior for scoped attributes.

This resolver handles all variable resolutions (where base is null. It searches
PageContext.findAttribute() for a matching attribute. If not found, it will return null, or in the
case of setValue it will create a new attribute in the page scope with the given name.

Since: JSP 2.1

See Also: javax.el.ELResolver

Member Summary

Constructors
ScopedAttributeELResolver()190

Methods
 java.lang.Class

<java.lang.String>
getCommonPropertyType(javax.el.ELContext context,
java.lang.Object base)190

 java.util.Iterator
<java.beans.FeatureDes

criptor>

getFeatureDescriptors(javax.el.ELContext context,
java.lang.Object base)190

 java.lang.Class
<java.lang.Object>

getType(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)191

 java.lang.Object getValue(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)191

 boolean isReadOnly(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property)192

 void setValue(javax.el.ELContext context, java.lang.Object base,
java.lang.Object property, java.lang.Object val)192

Inherited Member Summary

Fields inherited from class ELResolver

ScopedAttributeELResolver javax.servlet.jsp.el

ScopedAttributeELResolver()

2-190 JavaServer Pages 2.1 Specification • May 2006

Constructors

ScopedAttributeELResolver()

public ScopedAttributeELResolver()

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class<java.lang.String> getCommonPropertyType(javax.el.ELContext

context, java.lang.Object base)

If the base object is null, returns String.class. Otherwise, returns null.

Overrides: getCommonPropertyType in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in a null return value.

Returns: null if base is not null; otherwise String.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator<java.beans.FeatureDescriptor>

getFeatureDescriptors(javax.el.ELContext context, java.lang.Object base)

If the base object is null, returns an Iterator containing FeatureDescriptor objects with
information about each scoped attribute resolved by this resolver. Otherwise, returns null.

The Iterator returned must contain one instance of java.beans.FeatureDescriptor for each
scoped attribute found in any scope. Each info object contains information about a single scoped attribute,
and is initialized as follows:

displayName - The name of the scoped attribute. name - Same as displayName property. shortDescription -
A suitable description for the scoped attribute. Should include the attribute’s current scope (page, request,
session, application). Will vary by implementation. expert - false hidden - false preferred - true

In addition, the following named attributes must be set in the returned FeatureDescriptors:

javax.el.ELResolver.TYPE - The current runtime type of the scoped attribute.
javax.el.ELResolver.RESOLVABLE_AT_DESIGN_TIME - true.

Overrides: getFeatureDescriptors in class ELResolver

RESOLVABLE_AT_DESIGN_TIME, TYPE

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Inherited Member Summary

javax.servlet.jsp.el ScopedAttributeELResolver

getType(ELContext, Object, Object)

javax.servlet.jsp.el ScopedAttributeELResolver 2-191

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in a null return value.

Returns: An Iterator containing one FeatureDescriptor object for each scoped attribute, or
null if base is not null.

getType(ELContext, Object, Object)

public java.lang.Class<java.lang.Object> getType(javax.el.ELContext context,

java.lang.Object base, java.lang.Object property)

If the base object is null, returns Object.class to indicate that any type is valid to set for a scoped
attribute.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if base is null. If this property is not true after this method is called, the caller should
ignore the return value.

Overrides: getType in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the scoped attribute to resolve.

Returns: If the propertyResolved property of ELContext was set to true, then
Object.class; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property)

If the base object is null, searches the page, request, session and application scopes for an attribute with
the given name and returns it, or null if no attribute exists with the current name.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if base is null. If this property is not true after this method is called, the caller should
ignore the return value.

Overrides: getValue in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the scoped attribute to resolve.

Returns: If the propertyResolved property of ELContext was set to true, then the scoped
attribute; otherwise undefined.

ScopedAttributeELResolver javax.servlet.jsp.el

isReadOnly(ELContext, Object, Object)

2-192 JavaServer Pages 2.1 Specification • May 2006

Throws:
java.lang.NullPointerException - if context is null

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property)

If the base object is null, returns false to indicate that scoped attributes are never read-only.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if base is null. If this property is not true after this method is called, the caller should
ignore the return value.

Overrides: isReadOnly in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the scoped attribute.

Returns: If the propertyResolved property of ELContext was set to true, then false;
otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null.

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is null, sets an existing scoped attribute to the new value, or creates a new scoped
attribute if one does not exist by this name.

If the provided attribute name matches the key of an attribute in page scope, request scope, session scope, or
application scope, the corresponding attribute value will be replaced by the provided value. Otherwise, a
new page scope attribute will be created with the given name and value.

The propertyResolved property of the ELContext object must be set to true by this resolver
before returning if base is null. If this property is not true after this method is called, the caller should
ignore the return value.

Overrides: setValue in class ELResolver

Parameters:
context - The context of this evaluation.

base - Only null is handled by this resolver. Other values will result in an immediate return.

property - The name of the scoped attribute to set.

val - The value for the scoped attribute.

javax.servlet.jsp.el ScopedAttributeELResolver

setValue(ELContext, Object, Object, Object)

javax.servlet.jsp.el ScopedAttributeELResolver 2-193

Throws:
java.lang.NullPointerException - if context is null.

ELException174 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

VariableResolver javax.servlet.jsp.el

resolveVariable(String)

2-194 JavaServer Pages 2.1 Specification • May 2006

javax.servlet.jsp.el

VariableResolver
Declaration
public interface VariableResolver

Deprecated. As of JSP 2.1, replaced by javax.el.ELResolver

Description
This class is used to customize the way an ExpressionEvaluator resolves variable references at evaluation time.
For example, instances of this class can implement their own variable lookup mechanisms, or introduce the
notion of “implicit variables” which override any other variables. An instance of this class should be passed
when evaluating an expression.

An instance of this class includes the context against which resolution will happen

Since: JSP 2.0

Methods

resolveVariable(String)

public java.lang.Object resolveVariable(java.lang.String pName)

throws ELException

Resolves the specified variable. Returns null if the variable is not found.

Parameters:
pName - the name of the variable to resolve

Returns: the result of the variable resolution

Throws:
ELException174 - if a failure occurred while trying to resolve the given variable

Member Summary

Methods
 java.lang.Object resolveVariable(java.lang.String pName)194

3-1JavaServer Pages 2.1 Specification

Part III

The next Appendices provide details.
Appendices B, C and D are normative. Appendices A, E, and F are non-

normative.
The Appendices are

• Appendix A - Packaging JSP pages

• Appendix B - Schema for the portion of web.xml owned by the JSP specifica-
tion

• Appendix C - Schema for the Tag Library Descriptor file.

• Appendix D - Page Character Encoding Detection Algorithm

• Appendix E - Changes

• Appendix F - Glossary of terms

3-2

JavaServer Pages 2.1 Specification

3-3JavaServer Pages 2.1 Specification

A P P E N D I X JSP.A
Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a
WAR for delivery into a Web container. In the first example, the JSP page is deliv-
ered in source form. This is likely to be the most common example. In the second
example the JSP page is compiled into a servlet that uses only Servlet 2.5 and JSP
2.1 API calls; the servlet is then packaged into a WAR with a deployment descriptor
such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix
relates more to the Servlet 2.5 capabilities than to the JSP 2.1 capabilities. The
appendix is included here as this is a feature that JSP page authors and JSP page
authoring tools are interested in.

JSP.A.1A Very Simple JSP Page

We start with a very simple JSP page HelloWorld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>
Hello World
</p>

JSP.A.2The JSP Page Packaged as Source in a WAR File

The JSP page can be packaged into a WAR file by just placing it at location /

HelloWorld.jsp the default JSP page extension mapping will pick it up. The web.xml

is trivial:

3-4

JavaServer Pages 2.1 Specification

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<session-config>

<session-timeout> 1 </session-timeout>
</session-config>

</webapp>

JSP.A.3The Servlet for the Compiled JSP Page

As an alternative, we will show how one can compile the JSP page into a servlet
class to run in a JSP container.

The JSP page is compiled into a servlet with some implementation dependent
name com.acme._jsp_HelloWorld_XXX_Impl. The servlet code only depends on the
JSP 2.1 and Servlet 2.5 APIs, as follows:

package com.acme;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public class _jsp_HelloWorld_XXX_Impl
extends PlatformDependent_Jsp_Super_Impl

{
public void _jspInit() {

// ...
}

public void jspDestroy() {
// ...

}

static JspFactory_factory= JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException

3-5

JavaServer Pages 2.1 Specification

{
Object page= this;
HttpSessionsession= request.getSession();
ServletConfigconfig= getServletConfig();
ServletContextapplication = config.getServletContext();

PageContextpageContext
= _factory.getPageContext(this,

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true
);

JspWriterout= pageContext.getOut();
// page context creates initial JspWriter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}
}

}

JSP.A.4The Web Application Descriptor

The servlet is made to look as a JSP page with the following web.xml:

3-6

JavaServer Pages 2.1 Specification

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<servlet>

<servlet-name> HelloWorld </servlet-name>
<servlet-class>com.acme._jsp_HelloWorld_XXX_Impl</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>

</servlet-mapping>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

JSP.A.5The WAR for the Compiled JSP Page

Finally everything is packaged together into a WAR:

/WEB-INF/web.xml

/WEB-INF/classes/com/acme/_jsp_HelloWorld_XXX_Impl.class

Note that if the servlet class generated for the JSP page had depended on some
support classes, they would have to be included in the WAR.

3-7JavaServer Pages 2.1 Specification

A P P E N D I X JSP.B
JSP Elements of web.xml

This appendix describes the JSP elements of the Servlet Web Application
Deployment Descriptor, which is described using XML Schema.

JSP.B.1XML Schema for JSP 2.1 Deployment Descriptor

The Servlet 2.5 deployment descriptor schema includes the definitions that
appear in this section.

This is the same XML Schema as http://java.sun.com/xml/ns/javaee/

jsp_2_1.xsd, except for some formatting changes to extract comments and make
them more readable.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/javaee"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.1">

 <xsd:annotation>

 <xsd:documentation>

 @(#)jsp_2_1.xsds 1.5 08/11/05

 </xsd:documentation>

 </xsd:annotation>

3-8

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP 2.1 deployment descriptor

 types. The JSP 2.1 schema contains all the special

 structures and datatypes that are necessary to use JSP files

 from a web application.

 The contents of this schema is used by the web-app_2_5.xsd

 file to define JSP specific content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all Java EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="javaee_5.xsd"/>

<!-- ** -->

 <xsd:complexType name="jsp-configType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-configType is used to provide global configuration

 information for the JSP files in a web application. It has

 two subelements, taglib and jsp-property-group.

3-9

JavaServer Pages 2.1 Specification

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="taglib"

 type="javaee:taglibType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="jsp-property-group"

 type="javaee:jsp-property-groupType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-fileType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-file element contains the full path to a JSP file

 within the web application beginning with a `/’.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:pathType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-property-groupType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-property-groupType is used to group a number of

 files so they can be given global property information.

 All files so described are deemed to be JSP files. The

 following additional properties can be described:

 - Control whether EL is ignored.

3-10

JavaServer Pages 2.1 Specification

 - Control whether scripting elements are invalid.

 - Indicate pageEncoding information.

 - Indicate that a resource is a JSP document (XML).

 - Prelude and Coda automatic includes.

 - Control whether the character sequence #{ is allowed

 when used as a String literal.

 - Control whether template text containing only

 whitespaces must be removed from the response output.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="url-pattern"

 type="javaee:url-patternType"

 maxOccurs="unbounded"/>

 <xsd:element name="el-ignored"

 type="javaee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily set the isELIgnored

 property of a group of JSP pages. By default, the

 EL evaluation is enabled for Web Applications using

 a Servlet 2.4 or greater web.xml, and disabled

 otherwise.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="page-encoding"

 type="javaee:string"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The valid values of page-encoding are those of the

 pageEncoding page directive. It is a

 translation-time error to name different encodings

 in the pageEncoding attribute of the page directive

3-11

JavaServer Pages 2.1 Specification

 of a JSP page and in a JSP configuration element

 matching the page. It is also a translation-time

 error to name different encodings in the prolog

 or text declaration of a document in XML syntax and

 in a JSP configuration element matching the document.

 It is legal to name the same encoding through

 mulitple mechanisms.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scripting-invalid"

 type="javaee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily disable scripting in a

 group of JSP pages. By default, scripting is

 enabled.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="is-xml"

 type="javaee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 If true, denotes that the group of resources

 that match the URL pattern are JSP documents,

 and thus must be interpreted as XML documents.

 If false, the resources are assumed to not

 be JSP documents, unless there is another

 property group that indicates otherwise.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

3-12

JavaServer Pages 2.1 Specification

 <xsd:element name="include-prelude"

 type="javaee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-prelude element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the beginning of each

 JSP page in this jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="include-coda"

 type="javaee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-coda element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the end of each

 JSP page in this jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="deferred-syntax-allowed-as-literal"

 type="javaee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

3-13

JavaServer Pages 2.1 Specification

The character sequence #{ is reserved for EL expressions.

 Consequently, a translation error occurs if the #{

 character sequence is used as a String literal, unless

 this element is enabled (true). Disabled (false) by

 default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="trim-directive-whitespaces"

 type="javaee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Indicates that template text containing only whitespaces

 must be removed from the response output. It has no

 effect on JSP documents (XML syntax). Disabled (false)

 by default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="taglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglibType defines the syntax for declaring in

 the deployment descriptor that a tag library is

 available to the application. This can be done

 to override implicit map entries from TLD files and

 from the container.

 </xsd:documentation>

 </xsd:annotation>

3-14

JavaServer Pages 2.1 Specification

 <xsd:sequence>

 <xsd:element name="taglib-uri"

 type="javaee:string">

 <xsd:annotation>

 <xsd:documentation>

 A taglib-uri element describes a URI identifying a

 tag library used in the web application. The body

 of the taglib-uri element may be either an

 absolute URI specification, or a relative URI.

 There should be no entries in web.xml with the

 same taglib-uri value.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="taglib-location"

 type="javaee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 the taglib-location element contains the location

 (as a resource relative to the root of the web

 application) where to find the Tag Library

 Description file for the tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

3-15

JavaServer Pages 2.1 Specification

JSP.B.2XML Schema for JSP 2.0 Deployment Descriptor

The Servlet 2.4 deployment descriptor schema includes the definitions that
appear in this Appendix.

This is the same XML Schema as http://java.sun.com/xml/ns/j2ee/jsp_2_0.xsd,
except for some formatting changes to extract comments and make them more
readable.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.0">

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP 2.0 deployment descriptor

 types. The JSP 2.0 schema contains all the special

 structures and datatypes that are necessary to use JSP files

 from a web application.

 The contents of this schema is used by the web-app_2_4.xsd

 file to define JSP specific content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

3-16

JavaServer Pages 2.1 Specification

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:complexType name="jsp-configType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-configType is used to provide global configuration

 information for the JSP files in a web application. It has

 two subelements, taglib and jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="taglib"

 type="j2ee:taglibType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="jsp-property-group"

 type="j2ee:jsp-property-groupType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-fileType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-file element contains the full path to a JSP file

 within the web application beginning with a `/’.

 </xsd:documentation>

 </xsd:annotation>

3-17

JavaServer Pages 2.1 Specification

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:pathType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-property-groupType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-property-groupType is used to group a number of

 files so they can be given global property information.

 All files so described are deemed to be JSP files. The

 following additional properties can be described:

 - Control whether EL is ignored

 - Control whether scripting elements are invalid

 - Indicate pageEncoding information.

 - Indicate that a resource is a JSP document (XML)

 - Prelude and Coda automatic includes.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="url-pattern"

 type="j2ee:url-patternType"

 maxOccurs="unbounded"/>

 <xsd:element name="el-ignored"

 type="j2ee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily set the isELIgnored

 property of a group of JSP pages. By default, the

 EL evaluation is enabled for Web Applications using

 a Servlet 2.4 or greater web.xml, and disabled

 otherwise.

 </xsd:documentation>

 </xsd:annotation>

3-18

JavaServer Pages 2.1 Specification

 </xsd:element>

 <xsd:element name="page-encoding"

 type="j2ee:string"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The valid values of page-encoding are those of the

 pageEncoding page directive. It is a

 translation-time error to name different encodings

 in the pageEncoding attribute of the page directive

 of a JSP page and in a JSP configuration element

 matching the page. It is also a translation-time

 error to name different encodings in the prolog

 or text declaration of a document in XML syntax and

 in a JSP configuration element matching the document.

 It is legal to name the same encoding through

 mulitple mechanisms.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scripting-invalid"

 type="j2ee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily disable scripting in a

 group of JSP pages. By default, scripting is

 enabled.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="is-xml"

 type="j2ee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

3-19

JavaServer Pages 2.1 Specification

 If true, denotes that the group of resources

 that match the URL pattern are JSP documents,

 and thus must be interpreted as XML documents.

 If false, the resources are assumed to not

 be JSP documents, unless there is another

 property group that indicates otherwise.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="include-prelude"

 type="j2ee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-prelude element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the beginning of each

 JSP page in this jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="include-coda"

 type="j2ee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-coda element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the end of each

 JSP page in this jsp-property-group.

3-20

JavaServer Pages 2.1 Specification

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="taglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglibType defines the syntax for declaring in

 the deployment descriptor that a tag library is

 available to the application. This can be done

 to override implicit map entries from TLD files and

 from the container.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="taglib-uri"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 A taglib-uri element describes a URI identifying a

 tag library used in the web application. The body

 of the taglib-uri element may be either an

 absolute URI specification, or a relative URI.

 There should be no entries in web.xml with the

 same taglib-uri value.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="taglib-location"

 type="j2ee:pathType">

3-21

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 the taglib-location element contains the location

 (as a resource relative to the root of the web

 application) where to find the Tag Library

 Description file for the tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

3-22

JavaServer Pages 2.1 Specification

3-23JavaServer Pages 2.1 Specification

A P P E N D I X JSP.C
Tag Library Descriptor

Formats

This appendix includes the XML Schema and DTD files for tag library
descriptors using each version of the JSP specification (from JSP 1.1 to current). All
JSP 2.1 containers are required to be able to parse and accept all TLD formats
described in this appendix. The formats are listed in order from most recent to least
recent.

JSP.C.1 XML Schema for TLD, JSP 2.1

The following is an XML Schema file describing a Tag Library Descriptor in a
JSP 2.1 format. This is the same XSD as http://java.sun.com/xml/ns/javaee/web-

jsptaglibrary_2_1.xsd, except for some formatting changes to extract comments and
make them more readable. Some of the types used in this XSD are defined in the
Java EE Platform Specification (see Related Documents in the Preface for a link to
this specification).

The schema is preceeded by a set of diagrams that graphically illustrate the
element structure of the schema. The symbols ‘+’, ‘*’, ‘|’, ‘(’ and ‘)’ have the
same meaning as in DTD. In the event of a discrepancy between these diagrams
and the schema, the schema prevails.

This schema differs from the JSP 2.0 version by supporting deferred
expressions. The <attribute> element now supports three new sub-elements:
<deferred-value>, <deferred-method>, and <method-signature>.

3-24

JavaServer Pages 2.1 Specification

Figure JSP.C-1 TLD Schema Element Structure

Figure JSP.C-2 TLD Schema Element Structure - listener

taglib

description*

icon*

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function

description*

display-name*

icon*

small-icon?

large-icon?

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function*

taglib-extension* extension-element+

description*

validator-class

init-param* description*

param-name

param-value

See Below...

See Below...

See Below...

See Below...

listener*

description*

display-name*

icon*

small-icon?

large-icon?
listener-class

3-25

JavaServer Pages 2.1 Specification

Figure JSP.C-3 TLD Schema Element Structure - tag

3-26

JavaServer Pages 2.1 Specification

Figure JSP.C-4 TLD Schema Element Structure - tag-file

Figure JSP.C-5 TLD Schema Element Structure - function

tag-file*

description*

display-name*

icon*

small-icon?

large-icon?
name

path

example?

tag-extension* extension-element+

function*

description*

display-name*

icon*

small-icon?

large-icon?
name

function-class

function-signature

example?

function-extension* extension-element+

3-27

JavaServer Pages 2.1 Specification

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/javaee"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.1">

 <xsd:annotation>

 <xsd:documentation>

 @(#)web-jsptaglibrary_2_1.xsds 1.1

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP Taglibrary

 descriptor. All Taglibrary descriptors must

 indicate the tag library schema by using the Taglibrary

 namespace:

 http://java.sun.com/xml/ns/javaee

 and by indicating the version of the schema by

 using the version element as shown below:

 <taglib xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="..."

 version="2.1">

 ...

 </taglib>

 The instance documents may indicate the published

 version of the schema using xsi:schemaLocation attribute

 for Java EE namespace with the following location:

 http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd

 </xsd:documentation>

 </xsd:annotation>

3-28

JavaServer Pages 2.1 Specification

 <xsd:include schemaLocation="javaee_5.xsd"/>

<!-- ** -->

 <xsd:element name="taglib" type="javaee:tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root.

 The definition of taglib is provided

 by the tldTaglibType.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="tag-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains, among other things, tag and

 tag-file elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:tag|javaee:tag-file"/>

 <xsd:field xpath="javaee:name"/>

 </xsd:unique>

 <xsd:unique name="function-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains function elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:function"/>

 <xsd:field xpath="javaee:name"/>

 </xsd:unique>

 </xsd:element>

3-29

JavaServer Pages 2.1 Specification

<!-- ** -->

 <xsd:complexType name="body-contentType">

 <xsd:annotation>

 <xsd:documentation>

 Specifies the type of body that is valid for a tag.

 This value is used by the JSP container to validate

 that a tag invocation has the correct body syntax and

 by page composition tools to assist the page author

 in providing a valid tag body.

 There are currently four values specified:

 tagdependent The body of the tag is interpreted by the tag

 implementation itself, and is most likely

 in a different "language", e.g embedded SQL

 statements.

 JSP The body of the tag contains nested JSP

 syntax.

 empty The body must be empty

 scriptless The body accepts only template text, EL

 Expressions, and JSP action elements. No

 scripting elements are allowed.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

 <xsd:enumeration value="tagdependent"/>

 <xsd:enumeration value="JSP"/>

 <xsd:enumeration value="empty"/>

 <xsd:enumeration value="scriptless"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="extensibleType" abstract="true">

3-30

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 The extensibleType is an abstract base type that is used to

 define the type of extension-elements. Instance documents

 must substitute a known type to define the extension by

 using xsi:type attribute to define the actual type of

 extension-elements.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="functionType">

 <xsd:annotation>

 <xsd:documentation>

 The function element is used to provide information on each

 function in the tag library that is to be exposed to the EL.

 The function element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name A unique name for this function

 function-class Provides the name of the Java class that

 implements the function

 function-signature Provides the signature, as in the Java

 Language Specification, of the Java

 method that is to be used to implement

 the function.

 example Optional informal description of an

3-31

JavaServer Pages 2.1 Specification

 example of a use of this function

function-extension Zero or more extensions that provide extra

 information about this function, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="name"

 type="javaee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 A unique name for this function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-class"

 type="javaee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Provides the fully-qualified class name of the Java

 class containing the static method that implements

 the function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-signature"

 type="javaee:string">

 <xsd:annotation>

 <xsd:documentation>

 Provides the signature, of the static Java method that is

 to be used to implement the function. The syntax of the

3-32

JavaServer Pages 2.1 Specification

 function-signature element is as follows:

 FunctionSignature ::= ReturnType S MethodName S?

 ’(’ S? Parameters? S? ’)’

 ReturnType ::= Type

 MethodName ::= Identifier

 Parameters ::= Parameter

| (Parameter S? ’,’ S? Parameters)

 Parameter ::= Type

 Where:

 * Type is a basic type or a fully qualified

 Java class name (including package name),

 as per the ’Type’ production in the Java

 Language Specification, Second Edition,

 Chapter 18.

 * Identifier is a Java identifier, as per

 the ’Identifier’ production in the Java

 Language Specification, Second

 Edition, Chapter 18.

 Example:

 java.lang.String nickName(java.lang.String, int)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="example"

 type="javaee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of this function.

3-33

JavaServer Pages 2.1 Specification

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-extension"

 type="javaee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Function extensions are for tool use only and must not

 affect the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tagFileType">

 <xsd:annotation>

 <xsd:documentation>

 Defines an action in this tag library that is implemented

 as a .tag file.

 The tag-file element has two required subelements:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

path Where to find the .tag file implementing this

3-34

JavaServer Pages 2.1 Specification

 action, relative to the root of the web

application or the root of the JAR file for a

 tag library packaged in a JAR. This must

 begin with /WEB-INF/tags if the .tag file

resides in the WAR, or /META-INF/tags if the

 .tag file resides in a JAR.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

 information about this tag, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="name"

 type="javaee:tld-canonical-nameType"/>

 <xsd:element name="path"

 type="javaee:pathType"/>

 <xsd:element name="example"

 type="javaee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tag-extension"

 type="javaee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

3-35

JavaServer Pages 2.1 Specification

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tagType">

 <xsd:annotation>

 <xsd:documentation>

 The tag defines a unique tag in this tag library. It has one

 attribute, id.

 The tag element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

 tag-class The tag handler class implementing

 javax.servlet.jsp.tagext.JspTag

 tei-class An optional subclass of

 javax.servlet.jsp.tagext.TagExtraInfo

 body-content The body content type

 variable Optional scripting variable information

 attribute All attributes of this action that are

 evaluated prior to invocation.

3-36

JavaServer Pages 2.1 Specification

 dynamic-attributes Whether this tag supports additional

 attributes with dynamic names. If

 true, the tag-class must implement the

 javax.servlet.jsp.tagext.DynamicAttributes

 interface. Defaults to false.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

 information about this tag, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="name"

 type="javaee:tld-canonical-nameType"/>

 <xsd:element name="tag-class"

 type="javaee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the subclass of javax.serlvet.jsp.tagext.JspTag

 that implements the request time semantics for

 this tag. (required)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tei-class"

 type="javaee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo

 for this tag. (optional)

 If this is not given, the class is not consulted at

3-37

JavaServer Pages 2.1 Specification

 translation time.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="body-content"

 type="javaee:body-contentType">

 <xsd:annotation>

 <xsd:documentation>

 Specifies the format for the body of this tag.

 The default in JSP 1.2 was "JSP" but because this

 is an invalid setting for simple tag handlers, there

 is no longer a default in JSP 2.0. A reasonable

 default for simple tag handlers is "scriptless" if

 the tag can have a body.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="variable"

 type="javaee:variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="attribute"

 type="javaee:tld-attributeType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="dynamic-attributes"

 type="javaee:generic-booleanType"

 minOccurs="0"/>

 <xsd:element name="example"

 type="javaee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

3-38

JavaServer Pages 2.1 Specification

 </xsd:element>

 <xsd:element name="tag-extension"

 type="javaee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-attributeType">

 <xsd:annotation>

 <xsd:documentation>

 The attribute element defines an attribute for the nesting

 tag. The attribute element may have several subelements

 defining:

 description a description of the attribute

 name the name of the attribute

 required whether the attribute is required or

 optional

 rtexprvalue whether the attribute is a runtime attribute

 type the type of the attributes

 fragment whether this attribute is a fragment

deferred-value present if this attribute is to be parsed as a

 javax.el.ValueExpression

3-39

JavaServer Pages 2.1 Specification

deferred-method present if this attribute is to be parsed as a

 javax.el.MethodExpression

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="name"

 type="javaee:java-identifierType"/>

 <xsd:element name="required"

 type="javaee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute is required or

 optional.

 If not present then the default is "false", i.e

 the attribute is optional.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:choice>

 <xsd:sequence>

 <xsd:sequence minOccurs="0">

 <xsd:element name="rtexprvalue"

 type="javaee:generic-booleanType">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute can have scriptlet

 expressions as a value, i.e the value of the

 attribute may be dynamically calculated at request

 time, as opposed to a static value determined at

 translation time.

 If not present then the default is "false", i.e the

3-40

JavaServer Pages 2.1 Specification

 attribute has a static value

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="type"

 type="javaee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines the Java type of the attributes value.

 If this element is omitted, the expected type is

 assumed to be "java.lang.Object".

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:choice>

 <xsd:element name="deferred-value"

 type="javaee:tld-deferred-valueType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Present if the value for this attribute is to be

 passed to the tag handler as a

 javax.el.ValueExpression. This allows for deferred

evaluation of EL expressions. An optional subelement

 will contain the expected type that the value will

 be coerced to after evaluation of the expression.

 The type defaults to Object if one is not provided.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="deferred-method"

 type="javaee:tld-deferred-methodType"

 minOccurs="0">

3-41

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 Present if the value for this attribute is to be

 passed to the tag handler as a

 javax.el.MethodExpression. This allows for deferred

 evaluation of an EL expression that identifies a

 method to be invoked on an Object. An optional

 subelement will contain the expected method

 signature. The signature defaults to "void method()"

 if one is not provided.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 <xsd:element name="fragment"

 type="javaee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 "true" if this attribute is of type

 javax.jsp.tagext.JspFragment, representing dynamic

 content that can be re-evaluated as many times

 as needed by the tag handler. If omitted or "false",

 the default is still type="java.lang.String"

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

3-42

JavaServer Pages 2.1 Specification

 Defines the canonical name of a tag or attribute being

 defined.

 The name must conform to the lexical rules for an NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:xsdNMTOKENType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-deferred-methodType">

 <xsd:annotation>

 <xsd:documentation>

 Defines information about how to provide the value for a

tag handler attribute that accepts a javax.el.MethodExpression.

 The deferred-method element has one optional subelement:

 method-signature Provides the signature, as in the Java

 Language Specifies, that is expected for

 the method being identified by the

 expression.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="method-signature"

 type="javaee:string"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Provides the expected signature of the method identified

 by the javax.el.MethodExpression.

 This disambiguates overloaded methods and ensures that

 the return value is of the expected type.

3-43

JavaServer Pages 2.1 Specification

 The syntax of the method-signature element is identical

 to that of the function-signature element. See the

 documentation for function-signature for more details.

 The name of the method is for documentation purposes only

 and is ignored by the JSP container.

 Example:

 boolean validate(java.lang.String)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-deferred-valueType">

 <xsd:annotation>

 <xsd:documentation>

 Defines information about how to provide the value for a

tag handler attribute that accepts a javax.el.ValueExpression.

 The deferred-value element has one optional subelement:

 type the expected type of the attribute

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="type"

 type="javaee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The fully-qualified name of the Java type that is the

3-44

JavaServer Pages 2.1 Specification

 expected type for this deferred expression. If this

 element is omitted, the expected type is assumed to be

 "java.lang.Object".

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-extensionType">

 <xsd:annotation>

 <xsd:documentation>

 The tld-extensionType is used to indicate

 extensions to a specific TLD element.

 It is used by elements to designate an extension block

 that is targeted to a specific extension designated by

 a set of extension elements that are declared by a

 namespace. The namespace identifies the extension to

 the tool that processes the extension.

 The type of the extension-element is abstract. Therefore,

 a concrete type must be specified by the TLD using

 xsi:type attribute for each extension-element.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="extension-element"

 type="javaee:extensibleType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="namespace"

 use="required"

 type="xsd:anyURI"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

3-45

JavaServer Pages 2.1 Specification

<!-- ** -->

 <xsd:complexType name="tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root, it defines:

 description a simple string describing the "use" of this

 taglib, should be user discernable

 display-name the display-name element contains a

 short name that is intended to be displayed

 by tools

 icon optional icon that can be used by tools

 tlib-version the version of the tag library implementation

 short-name a simple default short name that could be

 used by a JSP authoring tool to create

 names with a mnemonic value; for example,

 the it may be used as the prefered prefix

 value in taglib directives

 uri a uri uniquely identifying this taglib

 validator optional TagLibraryValidator information

 listener optional event listener specification

 tag tags in this tag library

 tag-file tag files in this tag library

 function zero or more EL functions defined in this

 tag library

 taglib-extension zero or more extensions that provide extra

 information about this taglib, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

3-46

JavaServer Pages 2.1 Specification

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="tlib-version"

 type="javaee:dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

 Describes this version (number) of the taglibrary.

 It is described as a dewey decimal.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="short-name"

 type="javaee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 Defines a simple default name that could be used by

 a JSP authoring tool to create names with a

 mnemonicvalue; for example, it may be used as the

 preferred prefix value in taglib directives. Do

 not use white space, and do not start with digits

 or underscore.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="uri"

 type="javaee:xsdAnyURIType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines a public URI that uniquely identifies this

 version of the taglibrary. Leave it empty if it

 does not apply.

 </xsd:documentation>

 </xsd:annotation>

3-47

JavaServer Pages 2.1 Specification

 </xsd:element>

 <xsd:element name="validator"

 type="javaee:validatorType"

 minOccurs="0">

 </xsd:element>

 <xsd:element name="listener"

 type="javaee:listenerType"

 minOccurs="0" maxOccurs="unbounded">

 </xsd:element>

 <xsd:element name="tag"

 type="javaee:tagType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="tag-file"

 type="javaee:tagFileType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="function"

 type="javaee:functionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="taglib-extension"

 type="javaee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Taglib extensions are for tool use only and must not

 affect the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="javaee:dewey-versionType"

 fixed="2.1"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

3-48

JavaServer Pages 2.1 Specification

 Describes the JSP version (number) this taglibrary

 requires in order to function (dewey decimal)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="validatorType">

 <xsd:annotation>

 <xsd:documentation>

 A validator that can be used to validate

 the conformance of a JSP page to using this tag library is

 defined by a validatorType.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="validator-class"

 type="javaee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the TagLibraryValidator class that can be used

 to validate the conformance of a JSP page to using this

 tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="init-param"

 type="javaee:param-valueType"

 minOccurs="0" maxOccurs="unbounded">

3-49

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 The init-param element contains a name/value pair as an

 initialization param.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variable-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines scope of the scripting variable. See

 TagExtraInfo for details. The allowed values are,

 "NESTED", "AT_BEGIN" and "AT_END".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

 <xsd:enumeration value="NESTED"/>

 <xsd:enumeration value="AT_BEGIN"/>

 <xsd:enumeration value="AT_END"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variableType">

 <xsd:annotation>

 <xsd:documentation>

 The variableType provides information on the scripting

 variables defined by using this tag. It is a (translation

 time) error for a tag that has one or more variable

3-50

JavaServer Pages 2.1 Specification

 subelements to have a TagExtraInfo class that returns a

 non-null value from a call to getVariableInfo().

 The subelements of variableType are of the form:

 description Optional description of this

 variable

 name-given The variable name as a constant

 name-from-attribute The name of an attribute whose

 (translation time) value will

 give the name of the

 variable. One of name-given or

 name-from-attribute is required.

 variable-class Name of the class of the variable.

 java.lang.String is default.

 declare Whether the variable is declared

 or not. True is the default.

 scope The scope of the scripting varaible

 defined. NESTED is default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:choice>

 <xsd:element name="name-given"

 type="javaee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The name for the scripting variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

3-51

JavaServer Pages 2.1 Specification

 <xsd:element name="name-from-attribute"

 type="javaee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The name of an attribute whose

 (translation-time) value will give the name of

 the variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 <xsd:element name="variable-class"

 type="javaee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The optional name of the class for the scripting

 variable. The default is java.lang.String.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="declare"

 type="javaee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Whether the scripting variable is to be defined

 or not. See TagExtraInfo for details. This

 element is optional and "true" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scope"

3-52

JavaServer Pages 2.1 Specification

 type="javaee:variable-scopeType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The element is optional and "NESTED" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

3-53

JavaServer Pages 2.1 Specification

JSP.C.2 XML Schema for TLD, JSP 2.0

The following is an XML Schema file describing a Tag Library Descriptor in a
JSP 2.0 format. This is the same XSD as http://java.sun.com/xml/ns/j2ee/web-

jsptaglibrary_2_0.xsd, except for some formatting changes to extract comments and
make them more readable. Some of the types used in this XSD are defined in the
J2EE Platform Specification (see Related Documents in the Preface for a link to this
specification).

The schema is preceeded by a set of diagrams that graphically illustrate the
element structure of the schema. The symbols ‘+’, ‘*’, ‘|’, ‘(’ and ‘)’ have the
same meaning as in DTD. In the event of a discrepancy between these diagrams
and the schema, the schema prevails.

Figure JSP.C-6 TLD Schema Element Structure

taglib

description*

icon*

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function

description*

display-name*

icon*

small-icon?

large-icon?

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function*

taglib-extension* extension-element+

description*

validator-class

init-param* description*

param-name

param-value

See Below...

See Below...

See Below...

See Below...

3-54

JavaServer Pages 2.1 Specification

Figure JSP.C-7 TLD Schema Element Structure - listener

Figure JSP.C-8 TLD Schema Element Structure - tag

listener*

description*

display-name*

icon*

small-icon?

large-icon?
listener-class

tag*

description*

display-name*

icon*

small-icon?

large-icon?

name

tag-class

tei-class?

body-content

variable*

attribute*

dynamic-attributes?

example?

tag-extension* extension-element+

description*

name-given |
name-from-attribute

variable-class?

declare?

scope?

description*

name

required?

(rtexprvalue? type?)
| fragment?

3-55

JavaServer Pages 2.1 Specification

Figure JSP.C-9 TLD Schema Element Structure - tag-file

Figure JSP.C-10 TLD Schema Element Structure - function

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

tag-file*

description*

display-name*

icon*

small-icon?

large-icon?
name

path

example?

tag-extension* extension-element+

function*

description*

display-name*

icon*

small-icon?

large-icon?
name

function-class

function-signature

example?

function-extension* extension-element+

3-56

JavaServer Pages 2.1 Specification

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.0">

<xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP Taglibrary

 descriptor. All Taglibrary descriptors must

 indicate the tag library schema by using the Taglibrary

 namespace:

 http://java.sun.com/xml/ns/j2ee

 and by indicating the version of the schema by

 using the version element as shown below:

 <taglib xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="..."

 version="2.0">

 ...

 </taglib>

 The instance documents may indicate the published

 version of the schema using xsi:schemaLocation attribute

 for J2EE namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="taglib" type="j2ee:tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root.

 The definition of taglib is provided

 by the tldTaglibType.

3-57

JavaServer Pages 2.1 Specification

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="tag-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains, among other things, tag and

 tag-file elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:tag|j2ee:tag-file"/>

 <xsd:field xpath="j2ee:name"/>

 </xsd:unique>

 <xsd:unique name="function-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains function elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:function"/>

 <xsd:field xpath="j2ee:name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="body-contentType">

 <xsd:annotation>

 <xsd:documentation>

 Specifies the type of body that is valid for a tag.

 This value is used by the JSP container to validate

 that a tag invocation has the correct body syntax and

 by page composition tools to assist the page author

 in providing a valid tag body.

3-58

JavaServer Pages 2.1 Specification

 There are currently four values specified:

 tagdependent The body of the tag is interpreted by the tag

 implementation itself, and is most likely

 in a different "language", e.g embedded SQL

 statements.

 JSP The body of the tag contains nested JSP

 syntax.

 empty The body must be empty

 scriptless The body accepts only template text, EL

 Expressions, and JSP action elements. No

 scripting elements are allowed.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="tagdependent"/>

 <xsd:enumeration value="JSP"/>

 <xsd:enumeration value="empty"/>

 <xsd:enumeration value="scriptless"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="extensibleType" abstract="true">

 <xsd:annotation>

 <xsd:documentation>

 The extensibleType is an abstract base type that is used to

 define the type of extension-elements. Instance documents

 must substitute a known type to define the extension by

 using xsi:type attribute to define the actual type of

 extension-elements.

 </xsd:documentation>

 </xsd:annotation>

3-59

JavaServer Pages 2.1 Specification

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="functionType">

 <xsd:annotation>

 <xsd:documentation>

 The function element is used to provide information on each

 function in the tag library that is to be exposed to the EL.

 The function element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name A unique name for this function

 function-class Provides the name of the Java class that

 implements the function

 function-signature Provides the signature, as in the Java

 Language Specification, of the Java

 method that is to be used to implement

 the function.

 example Optional informal description of an

 example of a use of this function

function-extension Zero or more extensions that provide extra

 information about this function, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

3-60

JavaServer Pages 2.1 Specification

 type="j2ee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 A unique name for this function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Provides the fully-qualified class name of the Java

 class containing the static method that implements

 the function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-signature"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 Provides the signature, of the static Java method that is

 to be used to implement the function. The syntax of the

 function-signature element is as follows:

 FunctionSignature ::= ReturnType S MethodName S?

 ’(’ S? Parameters? S? ’)’

 ReturnType ::= Type

 MethodName ::= Identifier

 Parameters ::= Parameter

| (Parameter S? ’,’ S? Parameters)

3-61

JavaServer Pages 2.1 Specification

 Parameter ::= Type

 Where:

 * Type is a basic type or a fully qualified

 Java class name (including package name),

 as per the ’Type’ production in the Java

 Language Specification, Second Edition,

 Chapter 18.

 * Identifier is a Java identifier, as per

 the ’Identifier’ production in the Java

 Language Specification, Second

 Edition, Chapter 18.

 Example:

 java.lang.String nickName(java.lang.String, int)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of this function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

3-62

JavaServer Pages 2.1 Specification

Function extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tagFileType">

 <xsd:annotation>

 <xsd:documentation>

 Defines an action in this tag library that is implemented

 as a .tag file.

 The tag-file element has two required subelements:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

path Where to find the .tag file implementing this

 action, relative to the root of the web

application or the root of the JAR file for a

 tag library packaged in a JAR. This must

 begin with /WEB-INF/tags if the .tag file

resides in the WAR, or /META-INF/tags if the

 .tag file resides in a JAR.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

 information about this tag, for tool

3-63

JavaServer Pages 2.1 Specification

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

 type="j2ee:tld-canonical-nameType"/>

 <xsd:element name="path"

 type="j2ee:pathType"/>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tag-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

3-64

JavaServer Pages 2.1 Specification

<!-- ** -->

 <xsd:complexType name="tagType">

 <xsd:annotation>

 <xsd:documentation>

 The tag defines a unique tag in this tag library. It has one

 attribute, id.

 The tag element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

 tag-class The tag handler class implementing

 javax.servlet.jsp.tagext.JspTag

 tei-class An optional subclass of

 javax.servlet.jsp.tagext.TagExtraInfo

 body-content The body content type

 variable Optional scripting variable information

 attribute All attributes of this action that are

 evaluated prior to invocation.

 dynamic-attributes Whether this tag supports additional

 attributes with dynamic names. If

 true, the tag-class must implement the

 javax.servlet.jsp.tagext.DynamicAttributes

 interface. Defaults to false.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

3-65

JavaServer Pages 2.1 Specification

 information about this tag, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

 type="j2ee:tld-canonical-nameType"/>

 <xsd:element name="tag-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the subclass of javax.serlvet.jsp.tagext.JspTag

 that implements the request time semantics for

 this tag. (required)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tei-class"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo

 for this tag. (optional)

 If this is not given, the class is not consulted at

 translation time.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="body-content"

 type="j2ee:body-contentType">

3-66

JavaServer Pages 2.1 Specification

 <xsd:annotation>

 <xsd:documentation>

 Specifies the format for the body of this tag.

 The default in JSP 1.2 was "JSP" but because this

 is an invalid setting for simple tag handlers, there

 is no longer a default in JSP 2.0. A reasonable

 default for simple tag handlers is "scriptless" if

 the tag can have a body.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="variable"

 type="j2ee:variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="attribute"

 type="j2ee:tld-attributeType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="dynamic-attributes"

 type="j2ee:generic-booleanType"

 minOccurs="0"/>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tag-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

3-67

JavaServer Pages 2.1 Specification

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-attributeType">

 <xsd:annotation>

 <xsd:documentation>

 The attribute element defines an attribute for the nesting

 tag. The attributre element may have several subelements

 defining:

 description a description of the attribute

 name the name of the attribute

 required whether the attribute is required or

 optional

 rtexprvalue whether the attribute is a runtime attribute

 type the type of the attributes

 fragment whether this attribute is a fragment

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="name"

 type="j2ee:java-identifierType"/>

 <xsd:element name="required"

 type="j2ee:generic-booleanType"

3-68

JavaServer Pages 2.1 Specification

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute is required or

 optional.

 If not present then the default is "false", i.e

 the attribute is optional.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:choice>

 <xsd:sequence>

 <xsd:element name="rtexprvalue"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute can have scriptlet

 expressions as a value, i.e the value of the

 attribute may be dynamically calculated at request

 time, as opposed to a static value determined at

 translation time.

 If not present then the default is "false", i.e the

 attribute has a static value

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="type"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines the Java type of the attributes value. For

3-69

JavaServer Pages 2.1 Specification

 static values (those determined at translation time)

 the type is always java.lang.String.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:element name="fragment"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 "true" if this attribute is of type

 javax.jsp.tagext.JspFragment, representing dynamic

 content that can be re-evaluated as many times

 as needed by the tag handler. If omitted or "false",

 the default is still type="java.lang.String"

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the canonical name of a tag or attribute being

 defined.

 The name must conform to the lexical rules for an NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

3-70

JavaServer Pages 2.1 Specification

 <xsd:restriction base="j2ee:xsdNMTOKENType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-extensionType">

 <xsd:annotation>

 <xsd:documentation>

 The tld-extensionType is used to indicate

 extensions to a specific TLD element.

 It is used by elements to designate an extension block

 that is targeted to a specific extension designated by

 a set of extension elements that are declared by a

 namespace. The namespace identifies the extension to

 the tool that processes the extension.

 The type of the extension-element is abstract. Therefore,

 a concrete type must be specified by the TLD using

 xsi:type attribute for each extension-element.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="extension-element"

 type="j2ee:extensibleType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="namespace"

 use="required"

 type="xsd:anyURI"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root, it defines:

3-71

JavaServer Pages 2.1 Specification

 description a simple string describing the "use" of this

 taglib, should be user discernable

 display-name the display-name element contains a

 short name that is intended to be displayed

 by tools

 icon optional icon that can be used by tools

 tlib-version the version of the tag library implementation

 short-name a simple default short name that could be

 used by a JSP authoring tool to create

 names with a mnemonic value; for example,

 the it may be used as the prefered prefix

 value in taglib directives

 uri a uri uniquely identifying this taglib

 validator optional TagLibraryValidator information

 listener optional event listener specification

 tag tags in this tag library

 tag-file tag files in this tag library

 function zero or more EL functions defined in this

 tag library

 taglib-extension zero or more extensions that provide extra

 information about this taglib, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="tlib-version"

 type="j2ee:dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

3-72

JavaServer Pages 2.1 Specification

 Describes this version (number) of the taglibrary.

 It is described as a dewey decimal.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="short-name"

 type="j2ee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 Defines a simple default name that could be used by

 a JSP authoring tool to create names with a

 mnemonicvalue; for example, it may be used as the

 preferred prefix value in taglib directives. Do

 not use white space, and do not start with digits

 or underscore.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="uri"

 type="j2ee:xsdAnyURIType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines a public URI that uniquely identifies this

 version of the taglibrary. Leave it empty if it

 does not apply.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="validator"

 type="j2ee:validatorType"

 minOccurs="0">

 </xsd:element>

 <xsd:element name="listener"

 type="j2ee:listenerType"

3-73

JavaServer Pages 2.1 Specification

 minOccurs="0" maxOccurs="unbounded">

 </xsd:element>

 <xsd:element name="tag"

 type="j2ee:tagType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="tag-file"

 type="j2ee:tagFileType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="function"

 type="j2ee:functionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="taglib-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

Taglib extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="2.0"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 Describes the JSP version (number) this taglibrary

 requires in order to function (dewey decimal)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

3-74

JavaServer Pages 2.1 Specification

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="validatorType">

 <xsd:annotation>

 <xsd:documentation>

 A validator that can be used to validate

 the conformance of a JSP page to using this tag library is

 defined by a validatorType.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="validator-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the TagLibraryValidator class that can be used

 to validate the conformance of a JSP page to using this

 tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="init-param"

 type="j2ee:param-valueType"

 minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The init-param element contains a name/value pair as an

 initialization param.

3-75

JavaServer Pages 2.1 Specification

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variable-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines scope of the scripting variable. See

 TagExtraInfo for details. The allowed values are,

 "NESTED", "AT_BEGIN" and "AT_END".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="NESTED"/>

 <xsd:enumeration value="AT_BEGIN"/>

 <xsd:enumeration value="AT_END"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variableType">

 <xsd:annotation>

 <xsd:documentation>

 The variableType provides information on the scripting

 variables defined by using this tag. It is a (translation

 time) error for a tag that has one or more variable

 subelements to have a TagExtraInfo class that returns a

 non-null value from a call to getVariableInfo().

 The subelements of variableType are of the form:

 description Optional description of this

3-76

JavaServer Pages 2.1 Specification

 variable

 name-given The variable name as a constant

 name-from-attribute The name of an attribute whose

 (translation time) value will

 give the name of the

 variable. One of name-given or

 name-from-attribute is required.

 variable-class Name of the class of the variable.

 java.lang.String is default.

 declare Whether the variable is declared

 or not. True is the default.

 scope The scope of the scripting varaible

 defined. NESTED is default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:choice>

 <xsd:element name="name-given"

 type="j2ee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The name for the scripting variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="name-from-attribute"

 type="j2ee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

3-77

JavaServer Pages 2.1 Specification

 The name of an attribute whose

 (translation-time) value will give the name of

 the variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 <xsd:element name="variable-class"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The optional name of the class for the scripting

 variable. The default is java.lang.String.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="declare"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Whether the scripting variable is to be defined

 or not. See TagExtraInfo for details. This

 element is optional and "true" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scope"

 type="j2ee:variable-scopeType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

3-78

JavaServer Pages 2.1 Specification

 The element is optional and "NESTED" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

JSP.C.3DTD for TLD, JSP 1.2

The following is a DTD describing a Tag Library Descriptor file in JSP 1.2
format. This is the same DTD as "http://java.sun.com/dtd/web-
jsptaglibrary_1_2.dtd", except for some formatting changes to extract comments
and make them more readable:

<!--
This is the DTD defining the JavaServer Pages 1.2 Tag Library descriptor (.tld)
(XML) file format/syntax.
A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
file, along with the appropriate implementation classes and other resources re-
quired to implement the actions defined therein. When deployed inside a JAR file,
the tag library descriptor files must be in the META-INF directory, or a subdirec-
tory of it. When deployed directly into a web application, the tag library descriptor
files must always be in the WEB-INF directory, or some subdirectory of it.
Packaged tag libraries must have at least one tag library descriptor file. The JSP
1.1 specification allowed for only a single TLD, in META-INF/taglib.tld, but in JSP
1.2 multiple tag libraries are allowed.
Use is subject to license terms.
-->

<!NOTATION WEB-JSPTAGLIB.1_2 PUBLIC “-//Sun Microsystems, Inc.//DTD
JSP Tag Library 1.2//EN”>

<!--
All JSP 1.2 tag library descriptors must include a DOCTYPE of the following form:

3-79

JavaServer Pages 2.1 Specification

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library
1.2//EN" "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
-->

<!--
The taglib element is the document root, it defines:

tlib-version the version of the tag library implementation
jsp-version the version of JSP the tag library depends upon
short-name a simple default name that could be used by a JSP authoring
tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives
uri a uri uniquely identifying this taglib
display-name the display-name element contains a short name that is intend-
ed to be displayed by tools
small-icon optional small-icon that can be used by tools
large-icon optional large-icon that can be used by tools
description a simple string describing the “use” of this taglib, should be user
discernable
validator optional TagLibraryValidator information
listener optional event listener specification
-->

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-name?,
small-icon?, large-icon?, description?, validator?, listener*, tag+) >

<!ATTLIST taglib
id ID #IMPLIED
xmlns CDATA #FIXED “http://java.sun.com/JSP/TagLibraryDescriptor”>

<!--
The value of the tlib-version element describes this version (number) of the tagl-
ibrary. This element is mandatory.

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT tlib-version (#PCDATA)

3-80

JavaServer Pages 2.1 Specification

<!--
The value of the jsp-version element describes the JSP version (number) this
taglibrary requires in order to function. This element is mandatory. The value that
should be used for JSP 1.2 is "1.2" (no quotes).

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT jsp-version (#PCDATA) >

<!--
The value of the short-name element is a name that could be used by a JSP au-
thoring tool to create names with a mnemonic value; for example, it may be used
as the prefered prefix value in taglib directives.

Do not use white space, and do not start with digits or underscore.

#PCDATA ::= NMTOKEN
-->

<!ELEMENT short-name (#PCDATA) >

<!--
The value of the uri element is a public URI that uniquely identifies the exact se-
mantics of this taglibrary.
-->

<!ELEMENT uri (#PCDATA) >

<!--
The value of the description element is an arbitrary text string describing the tag
library.
-->

<!ELEMENT description(#PCDATA) >

<!--
The validator element provides information on an optional validator that can be
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator (validator-class, init-param*, description?) >

3-81

JavaServer Pages 2.1 Specification

<!--
The validator-class element defines the TagLibraryValidator class that can be
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator-class (#PCDATA) >

<!--
The init-param element contains a name/value pair as an initialization param.
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--
The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--
The listener element defines an optional event listener object to be instantiated
and registered automatically.
-->

<!ELEMENT listener (listener-class) >

<!--
The listener-class element declares a class in the application that must be regis-
tered as a web application listener bean.

See the Servlet 2.3 specification for details.
-->

<!ELEMENT listener-class (#PCDATA) >

3-82

JavaServer Pages 2.1 Specification

<!--
The tag element defines an action in this tag library. The tag element has one at-
tribute, id.
The tag element may have several subelements defining:
name The unique action name
tag-class The tag handler class implementing javax.serv-
let.jsp.tagext.Tag
tei-class An optional subclass of javax.servlet.jsp.tagext.TagExtraInfo
body-content The body content type
display-name A short name that is intended to be displayed by tools
small-icon Optional small-icon that can be used by tools
large-icon Optional large-icon that can be used by tools
description Optional tag-specific information
variable Optional scripting variable information
attribute All attributes of this action
example Optional informal description of an example of a use of this ac-
tion.
-->

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?,
small-icon?, large-icon?, description?, variable*, attribute*, example?) >

<!--
The tag-class element indicates the subclass of javax.serlvet.jsp.tagext.Tag that
implements the request time semantics for this tag. This element is required.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tag-class (#PCDATA) >

<!--
The tei-class element indicates the subclass of javax.servlet.jsp.tagext.TagEx-
traInfo for this tag. The class is instantiated at translation time. This element is
optional.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tei-class (#PCDATA) >

3-83

JavaServer Pages 2.1 Specification

<!--
The body-content element provides provides information on the content of the
body of this tag. This element is primarily intended for use by page composition
tools.
There are currently three values specified:

tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax
empty The body must be empty
This element is optional; the default value is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<!ELEMENT body-content (#PCDATA) >

<!--
The display-name element contains a short name that is intended to be displayed
by tools.
-->

<!ELEMENT display-name (#PCDATA) >

<!--
The large-icon element contains the name of a file containing a large (32 x 32)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT large-icon (#PCDATA) >

<!--
The small-icon element contains the name of a file containing a small (16 x 16)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT small-icon (#PCDATA) >

3-84

JavaServer Pages 2.1 Specification

<!--
The example element provides an informal description of an example of the use
of a tag.
-->

<!ELEMENT example (#PCDATA) >

<!--
The variable element provides information on the scripting variables defined by
this tag.

It is a (translation time) error for an action that has one or more variable subele-
ments to have a TagExtraInfo class that returns a non-null object.

The subelements of variable are of the form:

name-given The variable name as a constant
name-from-attribute The name of an attribute whose (translation time) value will
give the name of the variable. One of name-given or name-from-attribute is re-
quired.
variable-class Name of the class of the variable. java.lang.String is default.
declare Whether the variable is declared or not. True is the default.
scope The scope of the scripting variable defined. NESTED is de-
fault.
-->

<!ELEMENT variable ((name-given | name-from-attribute), variable-class?, de-
clare?, scope?, description?) >

<!--
The name-given element provides the name for the scripting variable.

One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-given (#PCDATA) >

<!--
The value of the name-from-attribute element is the name of an attribute whose
(translation-time) value will give the name of the variable.

One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-from-attribute (#PCDATA) >

3-85

JavaServer Pages 2.1 Specification

<!--
The variable-class element is the name of the class for the scripting variable.

This element is optional; the default is java.lang.String.
-->

<!ELEMENT variable-class (#PCDATA) >

<!--
The value of the declare element indicates whether the scripting variable is to be
defined or not. See TagExtraInfo for details.

This element is optional and is the default is true.
-->

<!ELEMENT declare (#PCDATA) >

<!--
The value of the scope element describes the scope of the scripting variable.

See TagExtraInfo for details.

This element is optional and the default value is the string “NESTED”. The other
legal values are “AT_BEGIN” and “AT_END”.
-->

<!ELEMENT scope (#PCDATA) >

<!--
The attribute element defines an attribute for the nesting tag.

The attributre element may have several subelements defining:
name the name of the attribute
attribute whether the attribute is required or optional
rtexpravaluewhether the attribute is a runtime attribute
type the type of the attributes
description a description of the attribute
-->

<!ELEMENT attribute (name, required? , rtexprvalue?, type?, description?) >

3-86

JavaServer Pages 2.1 Specification

<!--
The name element defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
-->

<!ELEMENT name(#PCDATA) >

<!--
The value of the required element indicates if the nesting attribute is required or
optional. This attribute is optional and its default value is false.

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT required (#PCDATA) >

<!--
The value of the rtexpvalue element indicates if the value of the attribute may be
dynamically calculated at request time, as opposed to a static value determined
at translation time. This attribute is optional and its default value is false

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!--
The value of the type element describes the Java type of the attributes value.

For static values (those determined at translation time) the type is always ja-
va.lang.String.
-->

<!ELEMENT type (#PCDATA) >

<!-- ID attributes -->

<!ATTLIST tlib-version id ID #IMPLIED>

<!ATTLIST jsp-version id ID #IMPLIED>

<!ATTLIST short-name id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>

3-87

JavaServer Pages 2.1 Specification

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST example id ID #IMPLIED>

<!ATTLIST tag id ID #IMPLIED>

<!ATTLIST tag-class id ID #IMPLIED>

<!ATTLIST tei-class id ID #IMPLIED>

<!ATTLIST body-content id ID #IMPLIED>

<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST name id ID #IMPLIED>

<!ATTLIST required id ID #IMPLIED>

<!ATTLIST rtexprvalue id ID #IMPLIED>

<!ATTLIST param-name id ID #IMPLIED>

<!ATTLIST param-value id ID #IMPLIED>

<!ATTLIST listener id ID #IMPLIED>

<!ATTLIST listener-class id ID #IMPLIED>

JSP.C.4DTD for TLD, JSP 1.1

The following is a DTD describing a Tag Library Descriptor file in JSP 1.1
format. This is the same DTD as http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd,
except for some formatting changes to extract comments and make them more
readable:

3-88

JavaServer Pages 2.1 Specification

<!--
This is the DTD defining the JavaServer Pages 1.1 Tag Library descriptor (.tld)
(XML) file format/syntax.

A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
(taglib.tld) file in the META-INF subdirectory, along with the appropriate imple-
menting classes, and other resources required toimplement the tags defined
therein.

Use is subject to license terms.
-->

<!--
The taglib tag is the document root, it defines:
tlibversion the version of the tag library implementation
jspversion the version of JSP the tag library depends upon
shortname a simple default short name that could be used by a JSP authoring
tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives
uri a uri uniquely identifying this taglib
info a simple string describing the “use” of this taglib, should be user dis-
cernable
-->

<!ELEMENT taglib (tlibversion, jspversion?, shortname, uri?, info?, tag+) >

<!ATTLIST taglib id ID #IMPLIED
 xmlns CDATA #FIXED
“http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd”

>

<!--
Describes this version (number) of the taglibrary (dewey decimal)

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT tlibversion (#PCDATA) >

3-89

JavaServer Pages 2.1 Specification

<!--
Describes the JSP version (number) this taglibrary requires in order to function
(dewey decimal)

The default is 1.1

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT jspversion (#PCDATA) >

<!--
Defines a short (default) shortname to be used for tags and variable names used/
created by this tag library. Do not use white space, and do not start with digits or
underscore.

#PCDATA ::= NMTOKEN
-->

<!ELEMENT shortname (#PCDATA) >

<!--
Defines a public URI that uniquely identifies this version of the taglibrary Leave it
empty if it does not apply.
-->

<!ELEMENT uri (#PCDATA) >

<!--
Defines an arbitrary text string descirbing the tag library
-->

<!ELEMENT info(#PCDATA) >

<!--
The tag defines a unique tag in this tag library, defining:
- the unique tag/element name
- the subclass of javax.servlet.jsp.tagext.Tag implementation class
- an optional subclass of javax.servlet.jsp.tagext.TagExtraInfo
- the body content type (hint)
- optional tag-specific information
- any attributes
-->

<!ELEMENT tag (name, tagclass, teiclass?, bodycontent?, info?, attribute*) >

3-90

JavaServer Pages 2.1 Specification

<!--
Defines the subclass of javax.serlvet.jsp.tagext.Tag that implements the request
time semantics for this tag. (required)

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tagclass (#PCDATA) >

<!--
Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag. (option-
al)

If this is not given, the class is not consulted at translation time.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT teiclass (#PCDATA) >

<!--
Provides a hint as to the content of the body of this tag. Primarily intended for use
by page composition tools.

There are currently three values specified:
tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax
empty The body must be empty. The default (if not defined) is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<!ELEMENT bodycontent (#PCDATA) >

<!--
The attribute tag defines an attribute for the nesting tag

An attribute definition is composed of:
- the attributes name (required)
- if the attribute is required or optional (optional)
- if the attributes value may be dynamically calculated at runtime by a scriptlet
expression (optional)
-->

3-91

JavaServer Pages 2.1 Specification

<!ELEMENT attribute (name, required? , rtexprvalue?) >

<!--
Defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
-->

<!ELEMENT name(#PCDATA) >

<!--
Defines if the nesting attribute is required or optional.

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.
-->

<!ELEMENT required (#PCDATA) >

<!--
Defines if the nesting attribute can have scriptlet expressions as a value, i.e the
value of the attribute may be dynamically calculated at request time, as opposed
to a static value determined at translation time.

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!ATTLIST tlibversion id ID #IMPLIED>

<!ATTLIST jspversion id ID #IMPLIED>

<!ATTLIST shortname id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>

<!ATTLIST info id ID #IMPLIED>

<!ATTLIST tag id ID #IMPLIED>

<!ATTLIST tagclass id ID #IMPLIED>

3-92

JavaServer Pages 2.1 Specification

<!ATTLIST teiclass id ID #IMPLIED>

<!ATTLIST bodycontent id ID #IMPLIED>

<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST name id ID #IMPLIED>

<!ATTLIST required id ID #IMPLIED>

<!ATTLIST rtexprvalue id ID #IMPLIED>

3-93JavaServer Pages 2.1 Specification

A P P E N D I X JSP.D
Page Encoding Detection

This appendix details the algorithm containers are required to use in order to
determine the character encoding for a JSP page or tag file. See Chapter JSP.4,
“Internationalization Issues” for details on where this algorithm is used. The algo-
rithm is designed to maximize convenience to the page author, while preserving
backwards compatibility with previous versions of the JSP specification.

JSP.D.1Detection Algorithm for JSP pages

The following is a complete though unoptimized algorithm for determining the
character encoding for a JSP file. JSP containers may use an optimized version of
this algorithm, but it must detect the same encoding as the algorithm in all cases.

1. Decide whether the source file is a JSP page in standard syntax or a JSP
document in XML syntax.

a. If there is a <is-xml> element in a <jsp-property-group> that names this
file, then if it has the value "true", the file is a JSP document, and if it
has the value "false", the file is not a JSP document.

b. Otherwise, if the file name has the extension "jspx", the file is a JSP
document.

c. Otherwise, try to find a <jsp:root> element in the file.

i. Determine the initial encoding from the first four bytes of the file,
as described in appendix F.1 of the XML 1.0 specification. For the
byte sequence "3C 3F 78 6D", use ISO-8859-1; for the byte
sequence "4C 6F A7 94", use IBM037; for all other cases, use the
UTF-* or UCS-* encoding given in the appendix.

3-94

JavaServer Pages 2.1 Specification

ii. Read the file using the initial encoding and search for a <jsp:root>
element. If the element is found and is the top element, the file is
a JSP document in XML syntax

d. Otherwise, the file is a JSP page in standard syntax.

2. Reset the file.

3. If the file is a JSP page in standard syntax:

3.1 If the file is not preceded by a BOM:

a. Check whether there is a JSP configuration element <page-encoding>
whose URL pattern matches this file.

b. Read the file using the initial encoding and search for a pageEncoding
attribute in a page declaration. The specification requires the attribute
to be found only if it is not preceded by non-ASCII characters, so
simplified implementations are allowed.

c. Report an error if there are a <page-encoding> configuration element
whose URL pattern matches this file and a pageEncoding attribute,
and the two name different encodings.

d. If there is a <page-encoding> configuration element whose URL
pattern matches this file, the page character encoding is the one named
in this element.

e. Otherwise, if there is a pageEncoding attribute, the page character
encoding is the one named in this attribute.

f. Otherwise, read the file using the initial encoding and search for a
charset value within a contentType attribute in a page declaration. If it
exists, the page character encoding is the one named in this charset
value. The specification requires the attribute to be found only if it is
not preceded by non-ASCII characters, so simplified implementations
are allowed.

g. Otherwise, the page character encoding is ISO-8859-1.

3.2 If the file is preceded by a BOM:

a. Read the file using the encoding indicated by the BOM, and search for
a pageEncoding attribute in a page declaration.

b. Report an error if any of the following conditions are met:

3-95

JavaServer Pages 2.1 Specification

i. There is a <page-encoding> configuration element whose URL
pattern matches this page and whose encoding does not match the
encoding indicated by the BOM.

ii. There is a pageEncoding page directive attribute whose encoding
does not match the encoding indicated by the BOM.

4. If the file is a JSP document in XML syntax, use these steps.

a. Determine the page character encoding as described in appendix F.1 of
the XML 1.0 specification. Note whether the encoding was named in
the encoding attribute of the XML prolog or just derived from the
initial bytes.

b. Check whether there is a JSP configuration element <page-encoding>
whose URL pattern matches this file.

c. Read the file using the detected encoding and search for a
pageEncoding attribute in a <jsp:directive.page> element.

d. Report an error if any of the following conditions is met:

i. The XML prolog names an encoding and there is <page-
encoding> configuration element whose URL pattern matches this
file and which names a different encoding.

ii. The XML prolog names an encoding and there is a pageEncoding
attribute which names a different encoding.

iii. There are a <page-encoding> configuration element whose URL
pattern matches this file and a pageEncoding attribute, and the two
name different encodings.

5. Reset the file and read it using the page character encoding.

JSP.D.2Detection Algorithm for Tag Files

The following details the algorithm for determining the character
encoding for a tag file. JSP containers may use an optimized version
of this algorithm, but it must detect the same encoding as the algorithm
in all cases.

1. Determine whether the source file is a tag file in standard or XML syntax.

a. If the file name has the extension "tagx", the file is a tag file in XML
syntax. Otherwise, it is a tag file in standard syntax.

3-96

JavaServer Pages 2.1 Specification

2. If the file is a tag file in standard syntax, use these steps:

2.1 If the file is not preceded by a BOM:

a. Read the file using the initial default encoding and search for a
pageEncoding attribute in a tag directive. The specification requires
the attribute to be found only if it is not preceded by non-ASCII
characters.

b. If there is a pageEncoding attribute, the page character encoding is the
one named in this attribute.

c. Otherwise, the page character encoding is ISO-8859-1.

d. Reset the file and read it using the page character encoding.

2.2 If the file is preceded by a BOM:

a. Read the file using the encoding indicated by the BOM, and search for
a pageEncoding attribute in a tag directive.

b. Report an error if there is a pageEncoding tag directive attribute whose
encoding does not match the encoding indicated by the BOM.

3. If the file is a JSP document in XML syntax, use these steps.

a. Determine the page character encoding as described in appendix F.1 of
the XML 1.0 specification.

b. Read the file using the detected encoding.

3-97

JavaServer Pages 2.1 Specification

3-98

JavaServer Pages 2.1 Specification

3-99JavaServer Pages 2.1 Specification

A P P E N D I X JSP.E
Changes

This appendix lists the changes in the JavaServer Pages specification. This
appendix is non-normative.

JSP.E.1Changes between JSP 2.1 Proposed Final Draft 2 and JSP
2.1 Final Release

• Added to the end of Section JSP.1.4.3 ("Using JSPs as Error Pages"):

A JSP container must detect if a JSP error page is self-referencing and throw
a translation error.

• Section JSP.7.1.11 (""): Changed last paragraph from:

Finally, note that injection is not supported on JSP pages or tag files.
This is because all the information represented by injection annotations
needs to be kown at deployment time. If an annotation is included in a
JSP page or tag file, it won’t be seen at deployment time (unless the JSP
was being precompiled during deployment).

to

Resource injection is not supported for JSP pages or tag files.

• Added to the end of JSP.8.3 ("Semantics of Tag Files"):

If a tag file in XML syntax contains a jsp:root element, the value of its
"version" attribute must match the tag file’s JSP version. See Section

3-100

JavaServer Pages 2.1 Specification

JSP.8.4.2 ("Packaging in a JAR") and Section JSP.8.4.3 ("Packaging Directly
in a Web Application") for how the JSP version of a tag file is
determined.

• Added to Section "Backwards Compatibility with JSP 2.0":

In a tag file, #{expr} in template text is handled according to the tag file’s JSP
version: If the tag file’s JSP version is 2.0 or less, #{expr} in template
text will not cause any error. If the tag file’s JSP version is equal to or
greater than 2.1, #{expr} in template text must cause an error, unless it
has been escaped or the tag file contains a
deferredSyntaxAllowedAsLiteral tag directive attribute set to TRUE. See
Section JSP.8.4.2 ("Packaging in a JAR") and Section JSP.8.4.3 ("Packaging
Directly in a Web Application") for how the JSP version of a tag file is
determined.

• Changed the signature of the getAttributeNamesInScope method in jav-
ax.servlet.jsp.JspContext from

abstract public Enumeration getAttributeNamesInScope(int scope);
to
abstract public Enumeration<String> getAttributeNamesInScope(int scope);

JSP.E.2Changes between JSP 2.1 Proposed Final Draft and JSP
2.1 Proposed Final Draft 2

E.2.1 Resource Injection

• Augmented Section JSP.7.1.11, “Resource Injection” to clarify exactly which
annotations are supported.

E.2.2 JSP document syntax and the DOCTYPE prologue

• There are some peculiarities involved to be able to validate a JSP Document
according to a DTD. Augmented Section JSP.6.2.4, “JSP Document Valida-

3-101

JavaServer Pages 2.1 Specification

tion” and Section JSP.6.4.4, “Example: Using Custom Actions and Tag Files”
to clarify these peculiarities.

E.2.3 Page Character Encoding

• Clarified the page character encoding algorithms to take into account tag files
in both JSP and XML syntax. Section JSP.4.1, “Page Character Encoding” and
Appendix D, "Page Encoding Detection" have been updated.

E.2.4 EL Resolvers

• Clarified that all ELResolvers added via JspApplicationContext.addELRe-
solver() are processed in the same order in which they were registered. See
Section JSP.2.9, “Resolution of Variables and their Properties”.

E.2.5 JSP Version of Tag Files

• Clarified how the JSP version of tag files is determined: Tag files packaged in
a JAR file inherit the JSP version from the referencing TLD. For tag files pack-
aged directly in a web application, the JSP version defaults to 2.0 and may be
configured from the JSP version of a TLD with the reserved name implicit.tld
placed in the same directory as the tag files. The implicit.tld may also be used
to configure the tlib-version of an implicit tag library. See Section JSP.8.4.2,
“Packaging in a JAR” and Section JSP.8.4.3, “Packaging Directly in a Web
Application”.

E.2.6 Unsupported Tag Directive and Attribute Directive Attributes in
Pre-2.1 Tag Files

• Specifying the deferredSyntaxAllowedAsLiteral tag directive attribute (see
Section JSP.8.5.1, “The tag Directive”), and the deferredValue, deferredVal-
ueType, deferredMethod, and deferredMethodSignature attribute directive at-

3-102

JavaServer Pages 2.1 Specification

tributes (see Section JSP.8.5.2, “The attribute Directive”) in a tag file whose
JSP version is less than 2.1 must cause a translation error.

E.2.7 Static Attribute

• Section JSP.2.3.1, “Static Attribute” has been clarified.

JSP.E.3Changes between JSP 2.1 Public Review and JSP 2.1
Proposed Final Draft

E.3.8 Resource Injection

• In a Java EE environment, tag handlers and event listeners may now satisfy ex-
ternal resource dependencies through the process of "Resource Injection". See
Section JSP.7.1.11, “Resource Injection”.

E.3.9 Deferred expressions in tag files

• In order to support deferred expressions in tag files, the following changes
were made:

• Added method createValueExpression to
javax.el.ExpressionFactory.

• Updated Section 2.3.5 "Dynamic Attribute or Deferred
Expression".

• Updated Sections JSP.8.3 "Semantics of Tag Files" and
JSP.8.5.2 "The attribute Directive".

E.3.10 Deferred expressions for dynamic attributes

The javadoc of package javax.servlet.jsp.tagext now clarifies how deferred
expressions are supported as dynamic attributes.

3-103

JavaServer Pages 2.1 Specification

E.3.11 ResourceBundleELResolver

• We now support the concept of a ResourceBundle EL Resolver to allow inter-
nationalization via the EL. See javax.el.ResourceBundleResolver and
Section JSP.2.9, “Resolution of Variables and their Properties”.

E.3.12 Clarified required support for JSR-45 ("Debugging Support for
Other Languages")

• Updated Section JSP.11.5, “Debugging Requirements” to be consistent with
Section JSP.1.1.10, “Debugging JSP Pages” where it is stated that support for
JSR-45 is required.

E.3.13 Byte Order Mark and Page Encoding

The JSP spec now supports Byte Order Marks (BOM) as authoritative page
encoding declarations for JSP pages in standard syntax. Section JSP.4.1, “Page
Character Encoding” and Section JSP.D.1, “Detection Algorithm for JSP pages”
have been updated.

E.3.14 TagAttributeInfo

Now supports a getter on to return the string specified for the <description>
subelement of <attribute> (must have been an oversight in previous versions of the
specification). See also Section E.5.40, “TLD schema now supports deferred
expressions as attributes”.

E.3.15 Taglib map order of precedence

• In Section JSP.7.3.2, “TLD resource path”, added the Java EE platform tag li-
braries at the highest level for the order of precedence.

E.3.16 Generics

• Since JSP 2.1 requires J2SE 5.0, we’ve modified the APIs that can take advan-
tage of generics. These include: javax.servlet.jsp.tagext.TagLibraryValidator:se-

tInitParameters(), javax.servlet.jsp.tagext.TagData:getAttributes(),

3-104

JavaServer Pages 2.1 Specification

javax.servlet.jsp.tagext.TagSupport:getValues(), javax.servlet.jsp.tagext.Simple-

TagSupport:findAncestorWithClass().

E.3.17 Various Clarifications

• In "Section JSP 2.4, Implict Objects", header and HeaderValues are obtained
from calls to HttpServletRequest (not ServletRequest).

• Clarified the definition of element "type" in the TLD schema. As stated in sec-
tion 1.14.2.1, String values are converted to a target type using the conver-
sions defined in table 1-11. So rtexprvalue=false attributes do not always have
a type of java.lang.String.

• In Table JSP.1-8 "Page Directive Attributes", clarified that for attribute "lan-
guage", the only defined and required scripting language value for this at-
tribute is java (all lowercase, case sensitive).

• The body-content constants in javax.servlet.jsp.tagext.TagInfo have been up-
dated to be consistent with the enumeration values in the TLD schema.
[https://jsp-spec-public.dev.java.net/issues/show_bug.cgi?id=149]

• For the import attribute in Table JSP 1-8 "Page Directive atttributes", clarified
that no other packages may be part of the default import list.

JSP.E.4Changes between JSP 2.1 EDR and JSP 2.1 Public Review

E.4.18 Backwards Compatibility with JSP 2.0

In EDR, backwards compatibility with JSP 2.0 was triggered via the version
of the deployment descriptor. Backwards compatibility is now triggered via the
container itself and the jsp-version associated with a tag library. See “Backwards
Compatibility with JSP 2.0”.

E.4.19 Faces Action Attribute and MethodExpression

In Faces, the action attribute accepts both a String literal or a MethodExpres-

sion. When migrating to JSF 1.2, if the attribute's type is set as MethodExpression,
an error would be reported if a String literal is specified because a String literal
cannot evaluate to a valid javax.el.MethodExpression.

To solve this issue, the specification of MethodExpression has been expanded
to also support String literal-expressions. Changes have been made to

3-105

JavaServer Pages 2.1 Specification

Section JSP.2.3, “Expressions and Attribute Values” to describe what happens
now when a tag handler attribute is of type javax.el.MethodExpression.

E.4.20 Additional element for the TLD

The <attribute> element of the TLD now allows subelements <rtexprvalue>

and <deferred-value> to be specified jointly. This is useful for tags such as
<c:forEach> that want to support both request-time expression values (e.g.
${model.list}) as well as deferred values (e.g. #{model.list}) to enable the mapping
of iteration attributes as EL variables that can then be used by nested Faces tags.

Chapter 2 on the Expression Language has been reworked in an attempt to
better describe how EL expressions are processed according to their type category.

E.4.21 New JspId attribute

Some tag handlers can benefit from being assigned a unique identifier within
a page. The new interface javax.servlet.jsp.tagext.JspIdConsumer makes this
possible.

E.4.22 Removing whitespaces from template text

It is now possible to have extraneous whitespaces removed from template text
through element trim-directive-whitespaces of JSP Property Groups (See
Section JSP.3.3.8, “Removing whitespaces from template text”), or the page and
tag file directive attribute trimDirectiveWhitespaces (See Section JSP.1.10.1, “The
page Directive”, Section JSP.8.5.1, “The tag Directive”).

E.4.23 Response Status Code for JSP error page

In Section JSP.1.4.3, “Using JSPs as Error Pages”, clarified how the response
status code of a JSP error page is set.

E.4.24 Comments in JSP Documents

In Section JSP.1.5, “Comments”, clarified how comments are processed in
JSP documents (XML syntax).

3-106

JavaServer Pages 2.1 Specification

E.4.25 Byte Order Mark and Page Encoding

In Section JSP.4.1, “Page Character Encoding”, clarified that Byte Order Marks
are not supported as authoritative page encoding declarations for JSP pages in
standard syntax. However, maybe this should be reconsidered for JSP 2.1. For
anyone with an opinion on this topic, please share your thoughts at https://jsp-spec-
public.dev.java.net/issues/show_bug.cgi?id=133

E.4.26 TagLibraryInfo

Allow for deferred ("lazy") parsing of TLDs by removing requirement that
underlying TLD must be parsed during constructor invocation. Added getTaglibrary-

Infos() method, which allows inspection of all "foreign" taglibs imported into trans-
lation unit.

E.4.27 SimpleTag and <body-content>

In Section JSP.7.1.5, “Simple Tag Handlers”, an error now needs to be
reported only if the offending tag (body content specified as JSP for a SimpleTag)
is actually being referenced in a JSP page. This will allow for optimizations.

E.4.28 JspApplicationContext.addResolver()

To make it easier for the Faces implementation, modified the constraint on call-
ing addResolver() to take effect after the application has received any request from
the client, instead of after the application has been initialized.

E.4.29 Duplicate tag files

In Section JSP.8.4.3, “Packaging Directly in a Web Application”, clarified the
fact that tag files can have a .tag or .tagx extension and that if two tag files have the
same name except for the extension (e.g. a.tag and a.tagx), the tag library is consid-
ered invalid.

E.4.30 Table 1-9

A translation error must occur if the value does not start with /WEB-INF/tags,
and not WEB-INF/tags/.

3-107

JavaServer Pages 2.1 Specification

E.4.31 Restructuring of API chapters

The high level descriptions of the APIs have been consolidated in each
package’s package.html file. This means that they will now also be part of the
independently generated javadocs.

JSP.E.5Changes between JSP 2.0 Final and JSP 2.1 EDR1

The JSP and JSF expert groups have collaborated together to unify the JSP 2.0
and Faces 1.1 Expressions Languages. The result is the new unified Expression Lan-
guage (EL 2.1).

The support in JSP 2.1 of the new unified Expression Language triggered
numerous modifications to the specification. These modifications are summarized
in the bullet items below.

E.5.32 New specification document for the Expression Language

While the expression language is still defined within the JSP 2.1 specification,
it however now has its own independent specification document. This makes the
intent clear that the Expression Language is generally applicable to a variety of
technologies and does not carry a dependency on the JSP specification.

E.5.33 Backwards Compatibility and Migration Guidelines

Backwards compatibility considerations with respect to JSP 2.0 as wells as
migration guidelines from JSP 2.0 to JSP 2.1 are described in the Preface. Section
Section JSP.3.3.2, “Deactivating EL Evaluation” also addresses the issue of back-
wards compatibility through deactivation of EL evaluation.

E.5.34 Chapter 2 - Expression Language

The chapter on the Expression Language has been substantially modified to
focus strictly on the integration of the unified EL within the JSP 2.1 environment.
EL specific content has been moved to the EL specification document.

E.5.35 New class javax.servlet.jsp.JspApplicationContext

The new class JspApplicationContext stores application-scoped information
relevant to JSP containers. It supports the integration of the unified Expression
Language by allowing other frameworks to register ELResolvers, and by providing

3-108

JavaServer Pages 2.1 Specification

access to a factory to create EL expression objects. See Section JSP.12.1, “JSP
Page Implementation Object Contract”.

E.5.36 New method getJspApplicationContext on JspFactory

This new method allows an application or framework to get access to the
JspApplicationContext. See Section JSP.12.1.3, “JspFactory”

E.5.37 Major changes to the javax.servlet.jsp.el API

All of the classes and interfaces of the javax.servlet.jsp.el API have been
deprecated. The APIs defined by the unified Expression Language (javax.el)
should be used as of JSP 2.1. Two new classes, ImplicitObjectELResolver and
ScopedAttributeELREsolver, have been added to implement variable resolution
rules that must be supported by a JSP container with the new unified Expression
Language. See Chapter JSP.14, “Expression Language API”.

E.5.38 New method getELContext on JspContext

This new method returns the ELContext associated with a JspContext. The
ELContext embeds the ELResolver that must be provided for the evaluation of EL
expressions that appear in a JSP page or tag file. See Section JSP.12.2.1,
“JspContext” and Section JSP.2.9, “Resolution of Variables and their Properties”.

E.5.39 New rules for tag handler attributes

Tag handlers must now handle attribute values according to the new Expres-

sion objects of the unified Expression Language. See Section JSP.2.2, “Syntax of
expressions in JSP pages: ${} vs #{}”.

E.5.40 TLD schema now supports deferred expressions as attributes

If a tag attribute wishes to accept a deferred expression, it must declare that it
wishes to do so in the TLD. This is supported with three new elements: <deferred-

value>, <deferred-method>, and <method-signature>. See Section JSP.C.1, “XML
Schema for TLD, JSP 2.1”.

3-109

JavaServer Pages 2.1 Specification

E.5.41 Syntax of EL expressions

The new unified EL supports both ${expr} and #{expr} syntaxes for EL
expressions. The specification has been modified in many places to state the fact
that EL expressions can be written using both constructs ${expr} or #{expr}.
Escaping rules for ${} have also been extended to #{}. See:

Section JSP.1.3.2, “Element Syntax”
Section JSP.1.3.10, “JSP Syntax Grammar”
Section JSP.1.6, “Quoting and Escape Conventions”.
isELIgnored in Section Table JSP.1-8, “Page Directive Attributes”
Section JSP.10.1.11, “Request-Time Attribute Expressions”
Section JSP.10.1.12, “Template Text and XML Elements”

E.5.42 Constraints on the use of ${} and #{}

While the unified EL API parses and evaluates ${expr} and #{expr} the same
way, additional restrictions are placed on the usage of these delimiters in JSP
pages. See Section JSP.2.2, “Syntax of expressions in JSP pages: ${} vs #{}”.

E.5.43 Escaping EL expressions

JSP 2.0 already provides for escaping ${} expressions using \${}. An additional
escape sequence \#{} has been added so that page authors can escape #{}

expressions. See:

3-110

JavaServer Pages 2.1 Specification

JSP.E.6Changes between JSP 2.0 PFD3 and JSP 2.0 Final

• Minor typos and clarifications.

• API Changes:

■ Changed javax.servlet.jsp.tagext.JspFragment from an interface to an abstract
class. Made JspFragment.invoke() abstract.

■ Added JspFragment.getJspContext() method.

• Added section on compatibility and porting issues between JSP 1.2 and JSP
2.0 to Preface.

• Minor clarifications to JSR-45 line number mapping guidelines.

• Clarified use of <jsp:output> in tag files.

• Added doctype-root-element, doctype-public and doctype-system properties to
<jsp:output> for outputting DOCTYPE in JSP XML sytnax.

• Requires that the JSP stratum is the default, for JSR-45 debugging.

• Added I18N detection algorithm appendix.

• Added element structure diagrams for TLD schema.

• Removed requirement on ordering of attribute setter calls, except for
<jsp:attribute>.

• Clarified that a TLD is invalid if it specifies "JSP" as the <body-content> for a
SimpleTag extension.

• Made the JSR-45 requirement optional.

• Clarified ranges of EL integer and floating point literals.

• Clarified semantics for cross-syntax translation-time includes (between stan-
dard and XML syntaxes). Added three examples to illustrate these semantics.

• Loosened checking for duplicate page directive attributes and duplicate taglib

directive declarations to make static includes more useful. Duplicates are now
okay so long as the values are identical in both places.

• Re-enabled preludes and codas for JSP Documents (XML syntax).

• Removed special behavior of the id attribute for custom tags. Virtually no con-
tainers implement this feature and it was thought solidifying this requirement
in JSP 2.0 would berak applications.

3-111

JavaServer Pages 2.1 Specification

• Clarified that the uri passed to TagLibraryValidator.validate() is the uri in the
XML View, not necessarily the value of the uri attribute in the taglib directive.

JSP.E.7Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3

• Minor typos and clarifications.

• Added \$ as a way to quote $ in template text and attribute values, both in
standard and XML syntaxes. This enabled quoting of EL expressions. Quot-
ing of $ is disabled for pages where EL is ignored, for backwards compatibili-
ty. Described the XML view for quoting EL expressions.

• Changes to the API:

■ NullPointerException must be thrown for null name in various methods.

■ Allow null passed as default prefix in EL API to indicate a prefix is required.

■ SimpleTagSupport: Made jspBody and jspContext fields private. Made
getJspBody() and getJspContext() accessors protected.

■ ExpressionEvaluator: Changed so that only one EL expression can be parsed
or evaluated at a time, with no intermixed static text. Removed defaultPrefix
parameters and changed so that FunctionMappers can mutate between Ex-
pressionEvaluator.parseExpression() and Expression.evaluate().

■ Updated javadocs for JspWriter to indicate that the resulting text is written to
the buffer or underlying writer directly, and not converted to the platform’s
default encoding first, which would make no sense in this context.

• Changes to Tag Library Descriptor (TLD):

■ Added descriptionGroup, example and extension elements to <tag-file>.

■ Moved definitions of j2ee:extensibleType and j2ee:tld-extensionType to web-
jsptaglibrary_2_0.xsd.

■ Added function-extension element.

■ Updated tag-name-uniqueness to check for uniqueness across name ele-
ments both in tag and tag-file elements. Removed tag-file-name-uniqueness.

■ Removed capital versions of TAGDEPENDENT, EMPTY, and SCRIPTLESS
enumerations in body-contentType.

■ Reformatted indentation.

■ Added example of how to write a schema for a TLD extension.

• Changes to the Expression Language (EL):

3-112

JavaServer Pages 2.1 Specification

■ Clarified that the container must check EL syntax at translation time.

■ Removed rules for escaping EL expression output. in EL chapter.

■ Added conditional operator (A ? B : C).

■ Added coercion rules for target type Long.

■ The empty operator can now be applied to any Collection.

■ In all cases, omitting the prefix of a function now means the function is as-
sociated with the default namespace.

• EBNF Grammar Changes:

■ Better handling for syntax errors for unmatched action tags

■ Added logic to handle quoting EL expressions.

• Changed conversion rules for attribute values for the empty String "" to match
EL semantics.

• Removed synchronization of variables from the page to the tag file, but kept
synchronization from tag file to page. This is consistent with classic tags.

• Changed the default value for the rtexprvalue attribute of the attribute directive
to true.

• I18N Changes:

■ During a <jsp:forward> or <jsp:include> the container is now required to en-
code the parameters using the character encoding from the request object.

■ Character encoding is now determined for each file separately, even if one
file includes another using the include directive.

• Changed the semantics of <is-xml> so that a value of false simply indicates the
resource is not a JSP document, but rather a JSP page.

• Changed .jspx extension to only work with a Servlet 2.4 or greater web.xml.

• Synchronized behavior of error pages with the Servlet specification.

• Changed dynamic-attributes attribute of the tag directive to specify the name
of a Map to place the dynamic attributes into, instead of placing them directly
in the page scope. Dynamic attributes with a uri are ignored.

• Added alias attribute and name-from-attribute mechanism for tag files.

• Clarified behavior of Tag Library Validators when namespaces are redefined
in JSP documents.

• Added non-normative guidelines for JSR-45 line number mapping.

3-113

JavaServer Pages 2.1 Specification

• Clarified that DTD validation of JSP Documents must be done by containers.

• Clarified that in JSP Documents the prefix "jsp" is not fixed for the namespace
http://java.sun.com/JSP/Page.

• Clarified that, if ’a’ is not a custom action, does not con-
tain a request-time attribute value whereas does.

JSP.E.8Changes between JSP 2.0 PFD and JSP 2.0 PFD2

• Minor typos and clarifications.

• Clarified handling of non-String types when using <jsp:attribute>.

• Clarified that JSP Configuration settings do not apply to tag files.

• Changed the way EL expressions and Scripting is enabled/disabled:

■ Removed isScriptingEnabled attribute from page/tag directive.

■ Changed <scripting-enabled> JSP Configuration element to
<scripting-invalid>

■ Changed <el-enabled> JSP Configuration element to <el-ignored>

■ Changed isELEnabled to isELIgnored.

• Clarified that EL expressions can be used to provide request-time attribute
values as well.

• Added a grammar for the <function-signature> element in the TLD.

• Clarified expected container behavior for various illegal JSP code.

• Clarified JSP Configuration URL Patterns are as defined in the Servlet speci-
fication.

• Clarified that for <jsp:invoke>, an IllegalStateException must occur if scope is
session and the calling page does not participate in a session.

• Clarified that invalid tag libraries must trigger a translation error.

• API Changes, including:

■ Various javadoc clarifications to enhance testability.

■ Added new pushBody(java.io.Writer) to JspContext.

■ Moved popBody() from PageContext to JspContext.

■ Removed ELException.toString()

3-114

JavaServer Pages 2.1 Specification

■ Adjusted semantics of SimpleTagSupport.findAncestorWithClass() so that it
uses the return value of TagAdapter.getAdaptee() when comparing class
types, and for the final return value.

■ Clarified SkipPageException should not be manually thrown in JSP Pages.

■ Removed TagLibraryInfo.getTagdir() and corresponding protected attribute, as
it can never return anything useful. Also removed the JSP 2.0 version of the
constructor, since it only differed by its tagdir parameter.

■ Removed pContext parameter from VariableResolver.resolveVariable().

■ Changed ExpressionEvaluator from an interface to an abstract class.

■ Changed Expression from an interface to an abstract class.

■ Removed PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE and
APPLICATION_SCOPE constants from JspContext as they are duplicated in
PageContext.

• Various changes to schema for JSP portion of web.xml and to schema for
TLDs.

• Made it illegal to refer to classes in the unnamed (a.k.a. default) package,
since JDK 1.4 has stopped supporting this.

• Reduced J2SE requirement to J2SE 1.3 for standalone containers and J2SE
1.4 for J2EE 1.4 containers. Made Unicode 3.0 and JSR-45 optional when
running in J2SE 1.3 and required when running in J2SE 1.4.

• JSR-45 SourceDebugAttribute extensions must now be generated for tag files
as well.

• Internationalization Changes:

■ Renamed the "Localization" chapter to "Internationalization", and rewrote it
for clarity, to provide more up-to-date information on JSTL, and to refer to
the Servlet specification for details of the ServletResponse behavior.

■ If the contentType charset defaults to ISO-8859-1, it isn’t passed on to the
ServletResponse, so that implicit character encoding specifications can still
override it in Servlet 2.4.

■ The page character encoding of documents in XML syntax is now always de-
tected in the XML specification. The pageEncoding attribute and/or page-en-
coding configuration element may be given, but must not disagree with the
XML prolog.

■ XML views are encoded in UTF-8, and their pageEncoding attribute is set to
reflect this. Their contentType attribute is set to reflect the contentType that
the container will pass to the ServletResponse.

3-115

JavaServer Pages 2.1 Specification

• Moved details about XML view of tag files to "JSP and XML" chapter.

• Changed the way variable synchronization works in Tag Files and simple tag
handlers:

■ Removed the Map parameter from JspFragment.invoke().

■ Removed all JspFragment logic dealing with preparing and restoring the
page scope.

■ Disallowed the use of <jsp:param> in <jsp:invoke> and <jsp:doBody>

■ Removed fragment attribute from the variable directive (and from the variable
element in the TLD). Variables can no longer be scoped to a specific frag-
ment.

■ It is now a translation-time error to have a variable directive with a name-giv-
en attribute having the same value as the name attribute of an attribute direc-
tive, for a given tag file translation unit.

■ Variables appear as page-scoped attributes local to the tag file, and are syn-
chronized with the calling JspContext at various points, depending on the
scope of the variable.

■ Clarified that scripting variables are still declared for SimpleTag variables.

• Clarified what implicit objects are available to tag files.

• Removed the value attribute of the <jsp:body> standard action.

• Added glossary entries for tag file, JSP fragment, named attribute, JSP seg-
ment, classic tag handler, simple tag handler, dynamic attribute, and JSP con-
figuration.

• Added <jsp:element> standard action to standard syntax as well.

• Expression Language

■ Clarified behavior of EL functions whose implementations are declared to
return void.

■ Specified expected behavior when an EL function throws an exception.

■ Specified that the result of an EL expression in template text is quoted, to
help in preventing cross-site scripting attacks.

■ Made rules for coercing A to Number type N more specific.

■ Added special handling for all operators for BigInteger and BigDecimal types.

• Specified stricter rules for tag handler instance reuse to improve compatibility.

3-116

JavaServer Pages 2.1 Specification

• Changed behavior of JspException being thrown from dynamic attributes to
be handled as though the exception came from another setter method, instead
of having come from doStartTag() or doEndTag().

• Clarified how dynamic attributes behave with respect to namespaces.

• Relaxed the need to call setParent(null) on Simple Tag Handlers.

• Clarified that classic tag invocations with empty bodies will not cause body
methods to be invoked, even if the body content type for the tag is something
other than "empty".

• Some clarifications on how implicit taglib maps are constructed.

• EBNF Grammar Changes:

■ Fixed EBNF for Params, Fallback productions to allow for <jsp:body> to ap-
pear inside.

■ Clarified that <jsp:body> cannot be used to specify the body of <jsp:body> or
<jsp:attribute> and that <jsp:attribute> cannot be used to specify an attribute
of <jsp:attribute>.

■ Clarified that XML-style attributes, such as those used in directives, can be
separated from each other by whitespace.

■ Added <jsp:output> and <jsp:text> to grammar.

■ Corrected definition of <jsp:param>.

■ Fixed EBNF for <jsp:text>, <jsp:scriptlet>, <jsp:expression> and <jsp:declara-
tion> so that CDATA sections are now allowed.

• Added mayscript attribute to <jsp:plugin> tag.

• Clarified <jsp-property-group> matching logic and how URL pattern overlaps
are resolved between <jsp-property-group> and <serlvet-mapping> elements.

• Clarified that a primitive cannot be used as the type of an attribute in tag files.

• Clarified that the default for the language attribute of the page directive is
java.

• Moved <jsp:element> and <jsp:text> to Standard Actions chapter. Added
<jsp:output> to Standard Actions chapter.

• Split XML chapter into two chapters - one on JSP Documents and one on
XML Views of JSP Pages and JSP Documents. Rewrote large portions of JSP
Documents chapter.

3-117

JavaServer Pages 2.1 Specification

• Changed semantics of SimpleTag so that if a body is not present, setJspBody()

is not called (instead of passing null).

• Added XML syntax for tag files (.tagx).

• Made preludes and codas illegal for JSP Documents (XML syntax).

JSP.E.9Changes between JSP 2.0 PFD1a and JSP 2.0 PFD

• Synchronized Standard Actions Chapter with JSP 1.2 Errata B.

• Clarifications in the Localization Chapter to make encoding table clearer.

• Changed TagAdapter to reduce confusion for container vendors.

• EL Function implementations no longer need to be in a non-abstract class.

• Updated BNF for EL to include functions.

• Removed the restriction that the value attribute of <jsp:body> cannot be used
for Classic Tag Handlers.

• Various typographical edits and clarifications (scattered).

• In <jsp:doBody>, made it illegal to specify a <jsp:param> with the same
name as a variable with a scope of AT_BEGIN or NESTED.

• Provided a brief, non-normative overview of the SimpleTag lifecycle in the
SimpleTag javadocs for the convenience of developers.

• Added new include() method to PageContext, with flush parameter.

• Removed name attribute from tag directive.

• Changed semantics of tag file packaging, and modified XML Schema accord-
ingly.

• Improved access to error information in error pages by adding javax.serv-
let.error.exception and providing access to other attributes via the EL.

• Filled in many missing javadoc entries in the JSP API.

• Clarified that, for tag files, if an optional attribute is declared but not passed
in, no page-scoped variable is created (used to say value is null, which is ille-
gal).

• Added TLD Deployment extensions to Tag Extensions chapter and TLD.
These extensions are only for tool consumption.

3-118

JavaServer Pages 2.1 Specification

• Cleaned up description of coercion rules in Expression Language chapter.

• Clarified that Dynamic Attributes must be considered to accept request-time
expression values.

• Modified the concept of JSP documents. In JSP 1.2 we had two quite separate
syntaxes and, for instance, elements like <jsp:expression> were not available
in classic JSP syntax. In JSP 2.0 the same basic syntax is available every-
where, but a JSP page can be tagged as being an XML document and thus can
benefit from XML concepts like well-formedness, validity, and entity defini-
tions.

• Added configuration property <is-xml> to indicate that a JSP page is to be
treated as an XML document (JSP Document).

• Incorporated new XML syntax details in the Core Syntax and in the JSP doc-
uments chapter. Renamed Chapter 6 from JSP Documents to JSP and XML.

• XML syntax versions of all JSP elements are now also available in JSP pages
that are not JSP documents - this is a, backward compatible, extension from
the JSP 1.2 semantics.

• Added default interpretation of extension ".jspx" to mean a JSP document
(and thus, an XML document).

• Added a <jsp:element> element to dynamically generate XML elements.

• Clarified that when a <jsp:useBean> element is used in an scriptless page, or
in an scriptless context (as in the body of an action so indicated), there are no
Java scripting variables created but instead an EL variable is created.

• Clarified that EL expressions are available in all attributes of both standard
and custom actions that accept run time expressions.

• Changed <jsp:invoke> and <jsp:doBody> to accept var attribute to store frag-
ment output as a String. Changed semantics of varReader so that ${reader}
no longer echoes the contents of the Reader and no longer resets the stream.
The Reader can be passed to a custom action for further processing.

• Can now use <jsp:attribute> for any standard or custom action attribute, and
can now use scriptlets and expressions in the body of <jsp:attribute> where it
makes sense.

• Removed fragment-input directive and replaced with a new fragment attribute
for the variable directive. Removed <fragment-attribute> and <fragment-in-
put> elements in the TLD and replaced them with new <attribute> subelement

3-119

JavaServer Pages 2.1 Specification

called <fragment>, and new <variable> subelement called <fragment>. Up-
dated APIs for tag info accordingly.

• Clarified that the implicit objects available to JSP pages under the EL are al-
ways available through the given names.

• The EL Evaluator API has continued to evolve. Among the changes there is
now a FunctionMapper abstraction, and parsing errors are now reported
through an ELParseException. The VariableResolver Interface now is ob-
tained from the JspContext and abstracts its context.

JSP.E.10Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a

• Removed restriction that containers must not reuse JspFragment instances.

• Added javax.servlet.jsp.tagext.JspTag to the API chapter.

• Fixed EBNF for Params, Fallback productions.

• Fixed some minor typos (scattered).

• Added uniqueness constraints to XML Schema for tag/name, tag-file/name
and function/name.

• Added SkipPageException as an exception for indicating a page is to be
skipped in JspFragments and Simple Tag Handlers. Replaces SKIP_PAGE
and EVAL_PAGE constants (only for Simple Tag Handlers - Classic Tag Han-
dlers still use those constants).

• Clarified <jsp:attribute> can be used to specify only request-time expression
attributes, and can be used for standard actions, and custom actions imple-
mented using either Classic Tag Handlers or Simple Tag Handlers. Also clari-
fied the <jsp:body> value attribute can only be used for Simple Tag Handlers
and that <jsp:attribute> can be used to specify a fragment even for Classic Tag
Handlers.

• Modified the page scope handling for Jsp Fragments and Tag Files to be much
cleaner. Removed peekPageScope(), pushPageScope() and popPage-
Scope(). Instead, fragments are assumed to share the page scope with its con-
taining page, and tag files are required to create a Jsp Context Wrapper.

• Removed javax.servlet.jsp.tagext.AttributeNotSupportedException, and re-
placed it with a simple JspException which is just as effective.

3-120

JavaServer Pages 2.1 Specification

• Added two constructors to JspTagException to allow specification of the root
cause.

• Made jspContext and jspBody fields protected in SimpleTagSupport.

JSP.E.11Changes between JSP 2.0 PD1 and JSP 2.0 PD2

NOTE: JSP 2.0 PD2 was not released publicly.

• Updated I18N chapter to indicate Unicode 3.0 support and new details URL.

• Now requires JSR-45 strata name to be JSP.

• Clarified trim attribute of <jsp:attribute> is to be used at translation time.

• Fixed some minor typos (scattered).

• Renamed <el-evaluation> web.xml element to <el-enabled>

• Reorganized new features. Created a cohesive chapter about Tag Files. Simple
Tag Handler details were moved to Tag Extensions and to the API chapter.
Standard Action description was moved to Standard Action chapter.

• Added a root interface JspTag to cover Tag and SimpleTag.

• Moved all TLD DTDs to a single "Tag Library Descriptor Schemas" Appen-
dix and added the new JSP 2.0 XML Schema to that appendix.

• Added JSP 2.0 XML Schema, which is imported by the Servlet 2.4 Web Ap-
plication Deployment Descriptor.

• Updated page directive table and grammar to include isScriptingEnabled and
isELEnabled.

• Added language, import, isScriptingEnabled and isELEnabled attributes to
tag directive.

• Applied fixes to EBNF grammar based on JSP 2.0 Preview EA1 experience

• Clarified that jsp:id is now required and added TagExtraInfo.validate() and re-
quirement that container call it instead of TagExtraInfo.isValid().

• Reorganized slightly the EL chapter to emphasize the parts of the language
that do not depend on JSP details. Also removed the description of the API in
that chapter: the javadoc-generated chapter is more complete.

3-121

JavaServer Pages 2.1 Specification

• Function names now need to be unique within a tag library; arity is not used to
disambiguate functions. This was done to simplify the EL language and the
decision can be revisited in later releases based on usage experience.

• Some refinements to the EL API: a new method was added that accepts a
VariableResolver instead of a JspContext, and the prefix/shortname map has
been split into two separate maps.

JSP.E.12Changes between JSP 2.0 CD2 and JSP 2.0 PD1

• Moved all the JSP configuration description into its own chapter.

• Reordered the EBNF description to be at the end of JSP 1.3.

• Restored some pieces in the Syntax chapter that were lost in an editing opera-
tion. The only substantive piece was the description of the <include-prelude>

and <include-coda> elements, which are now in the JSP configuration chapter.

• Added details on how to implement functions in EL.

JSP.E.13Changes between JSP 2.0 CD1 and JSP 2.0 CD2

E.13.44Between CD2c and CD2

• Upgraded major version from JSP 1.3 to JSP 2.0, added section to the Preface
explaining change.

• Added directive examples to JSP Fragments chapter.

• Moved section describing passing attribute values via <jsp:attribute> and
<jsp:body> to syntax chapter and moved definitions of these two standard ac-
tions to Standard Actions chapter, from JSP Fragments chapter.

• Added optional scope attribute to <jsp:invoke> and <jsp:doBody>.

• Improved and simplified the way tag files are packaged. One can now package
tag files in JARs or place them in a subdirectory of /WEB-INF/tags/ and ac-
cess them without specifying a uri.

• Changed SimpleTag to not extend Tag. Added TagAdapter to handle tag col-
laboration, and removed dependency on PageContext in SimpleTag. These
changes help make SimpleTag usable in environments other than Servlet re-
quest/response.

3-122

JavaServer Pages 2.1 Specification

• Changed fragment invocation via <jsp:invoke> and <jsp:doBody> to be able
to expose their result as a java.io.Reader object instead of a String. This is ex-
pected to be more efficient.

• Added <include-prelude> and <include-coda> elements to <jsp-properties-

group>. Added a description in the Syntax Chapter.

• Added a getExpressionEvaluator() method to JspContext (and, thus, to Page-

Context).

• Added better description of JSP configuration information to different chap-
ters.

• Added to-do notes on EL to Syntax chapter, sketching where the information
will go.

• Renamed elEvaluation property of page directive. The new name is isELEna-

bled, to be consistent with other properties.

E.13.45Between CD2b and CD2c

• Fixed syntax table so that flush is optional in <jsp:include> standard action.

• Integrated EL grammar with JSP EBNF.

• Clarified doEndTag() description when SKIP_PAGE is returned.

• Added dynamic-attributes element in tag directive to describe a tag file that
accepts dynamic attributes.

• Added SimpleTag, JspFragment, DynamicAttributes, AttributeNotSupporte-
dException, ExpressionEvaluator, and VariableResolver classes to API. Add-
ed new API chapter for javax.servlet.jsp.el package.

• Added isScriptingEnabled directive and scripting-enabled JSP configuration el-
ement.

• Renamed jsp-group JSP configuration element to jsp-properties-group. Clari-
fied conflict resolution rules.

• Clarified direction with EL function - details still to come.

• Added a chapter for EL API.

• Added description of page-encoding JSP configuration element to Localiza-
tion chapter.

3-123

JavaServer Pages 2.1 Specification

E.13.46Between CD2a and CD2b

• Reordered "Users of JSP Technology" and "Basic Concepts" in the Overview
section.

• Added <jsp-config> element to web.xml as a parent element for <taglib>.
Added <jsp-group> as a new subelement to describe properties for a group of
JSP pages that are described using <url-pattern> and other elements. Current-
ly the only other element is <el-evaluation>, which can be used to describe
whether EL evaluation is active or not by default.

• Modified the default rules for EL evaluation. Now, EL evaluation is always
off, but it is very easy to add evaluation on through a <jsp-group> element.

• Various EBNF fixes

• Fixed some typos in Example Scenario in JSP_Fragments chapter

• Clarified issues on <jsp:forward> from within a tag file?

• Clarified issues on <jsp:attribute> and whitespace

E.13.47Changes between CD1 and CD2a

• Added a part structure to the specification description. This helps provide
guideance to the readers.

• Added a mechanism to pass attributes whose names are not known until runt-
ime to tag handlers (Dynamic Attributes).

• Added getPageContext() to SimpleTag.

• Adjustment to i18n table to make defaultInputEncoding the default output en-
coding if unspecified.

• Moved EBNF description from Fragments chapter to Core Syntax.

• Improved EBNF description of <jsp:attribute> and <jsp:body>. Also, easier to
read valid standard action attribute sets.

JSP.E.14Changes between JSP 2.0 ED1 and JSP 2.0 CD1

This is the first Community Draft of the JSP 2.0 specification.

3-124

JavaServer Pages 2.1 Specification

E.14.48JSP Fragments, .tag Files, and Simple Tag Handlers

• A new chapter on JSP fragments and supporting technologies such as the .tag
mechanism and simple tag handlers:

■ JSP fragments allow a portion of JSP code to be encapsulated into a Java ob-
ject which can be passed around and evaluated zero or more times.

■ The .tag mechanism allows page authors to use JSP syntax to write Custom
Actions.

■ Simple tag handlers integrates tightly with JSP fragments and allows for a
much easier and more natural invocation protocol for tag extensions.

E.14.49Expression Language Added

• Added the Expression Language chapter, equivalent to that released in the JSP
Standard Tag Library (JSTL) Public Draft, Appendix A.

• Updated the Expression Language chapter, including preliminary information
on the API to invoke the EL evaluator.

E.14.50EBNF Fixes

Various fixes to the EBNF, to handle CustomAction translation errors correctly.
Improved readability by adding ATTR[] construct, to allow easier expression of
XML-style attributes that can appear in any order.

E.14.51I18N Clarifications

Incorporated JSP 1.2 errata_a. Clarified when container can call setContent-

Type() and how it is possible to dynamically affect content type and character encod-
ing from within a page or custom action.

E.14.52Other Changes

• Updated Status, Preface, Changes chapters.

• Made support for jsp:id mandatory.

• Various typographical fixes.

3-125

JavaServer Pages 2.1 Specification

JSP.E.15Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1

This is the first expert draft of the JSP 2.0 specification.

E.15.53Typographical Fixes and Version Numbers

Various typographical fixes that do not change any specification requirements,
and version number updates for JSP 2.0. Various things were fixed from JSP 1.2
such as missing page numbers, repeated table numbers, etc.

E.15.54Added EBNF Grammar for JSP Standard Syntax

A new section was added to the Syntax Chapter that presents a simple EBNF
grammar for the standard (i.e. non-XML) JSP syntax. The grammar is intended to
provide a concise syntax overview and to resolve any syntax ambiguities present in
the specification.

E.15.55Added Users of JavaServer Pages Section

A new section was added to the Overview Chapter that describes the various
classes of users that make use of JSP technology, describing their role, the technol-
ogy they’re familiar with, and the sections of this specifications that are relevant to
them.

E.15.56Added Placeholders for Expression Language and Custom Actions
Using JSP

Two new chapters were added in anticipation of the new Expression Language
and Custom Actions Using JSP features.

E.15.57Added Requirement for Debugging Support

A new section was added to the JSP Container Chapter requiring support for
JSR-045 ("Debugging Support for Other Languages"). The precompilation protocol
was also updated.

JSP.E.16Changes Between PFD 2 and Final Draft

This is the final version approved by JCP Executive Comittee; the document
was updated to reflect that status. All change bars were reset.

3-126

JavaServer Pages 2.1 Specification

E.16.58Added jsp:id mechanism

A new mechanism was added to allow willing JSP containers to provide
improved translation-time error information from TagLibraryValidator classes. The
signature of TagLibraryValidator.validate() was modified slightly, and a new Valida-
tionMessage class was added. These objects act through a new attribute, jsp:id,
which is optionally supported by a JSP container and exposed only through the
XML view of a JSP page. Chapter JSP.10, Chapter JSP.7 (Section JSP.7.4.1.2) and
Chapter JSP.13 (Section JSP.13.9.6) were affected.

E.16.59Other Small Changes

• Made height & width be rtexprs. Section JSP.5.7 was affected.

• Added attribute value conversion from String literal to short and Short, and
corrected conversion for char and Character in Table JSP.1-11.

• Corrected a statement on the allowed return values for doStartTag() for Tag,
IterationTag and BodyTag.. PFD2 incorrectly indicated that "emtpy" tags
could only return SKIP_BODY; the correct statement is that tags whose body-
content is "empty" can only return SKIP_BODY.

E.16.60Clarification of role of id

The mandated interpretations of the "id" attribute in Section JSP 2.13.3 (that id
represents page-wide unique ids) and the "scope" attribute in Section JSP 2.13.4
(regarding the scope for the introduced variable) were not enforced by most (per-
haps all?) containers, and were inconsistent with prevalent practices in custom tag
library development. Essentially these sections were being interpreted as localized
statements about the jsp:useBean standard action. This has been made explicit and
the sections were moved to Chapter 5 to reflect that.

Sections JSP.2.13.3 and JSP.2.13.4, and Chapter 4 were affected.

E.16.61Clarifications on Multiple Requests and Threading

• Clarify that TLV instances need be thread safe. This affected
Section JSP.13.9.6.

• Clarify that a tag handler instance is actively processing only one request at a
time; this happens naturally if the tag handler is instantiated afresh through
new() invocations, but it requires spelling once tag handler pooling is intro-
duced. This clarification affected Chapter JSP.13.

3-127

JavaServer Pages 2.1 Specification

E.16.62Clarifications on JSP Documents

Several clarifications in Chapter JSP.6.

• Reafirmed that, in a JSP page in XML syntax, the URI for jsp core actions is
important, not the prefix.

• Clarify that <?xml ... ?> is not required (as indicated by the XML spec).

• Clarified further the interpretation of whitespace on JSP documents.

E.16.63Clarifications on Well Known Tag Libraries

Clarified that a tag library author may indicate, through the description
comment, that a tag handler may expose at runtime only some subset of the
information described through the tag handler implementation class. This is useful
for specialized implementations of well-known tag libraries like the JSP standard
tag library. This clarification affected the description of the tag element in
Section JSP.7.3 and the description of Tag.setParent() and TagSupport.findAnces-

torWithClass().
Removed the last paragraph on Section JSP.7.3.9; we don’t have any plans to

remove the well-know URI mechanism.
In general cleaned up the presentation of the computation of the taglib map

between a URI and a TLD resource path; the previous version was clunky.

E.16.64Clarified Impact of Blocks

Clarified further the legal uses and the role of block constructs within scriptlets
and nested actions. This affected small portions of Sections JSP.1.3.3, JSP.9.4,
JSP.9.4.4 and JSP.13.9.10.

E.16.65Other Small Clarifications

• Reafirmed more explicitly that the location of icons is relative to TLD file.
Section JSP.7.3 was affected.

• Removed non-normative comment about JSR-045 in Section JSP.1.1.10.

• Removed the comment on errorPages needing to be JSP pages, they can also
be static objects. This affects Table JSP.1-8.

• Reaffirmed that event listeners in a tag library are registered before the appli-
cation is started. This affects Section JSP.7.1.9.

3-128

JavaServer Pages 2.1 Specification

• Clarify when the use of quoting conventions is required for attribute values.
Clarified that request-time attribute values follow the same rules. This affects
Section JSP.1.3.5, Section JSP.1.6 and Section JSP.1.14.1.

• Clarified the interpretation of relative specifications for include directives and
jsp:include and jsp:forward actions. This affected Section JSP.1.2.1,
Section JSP.1.10.5, Section JSP.5.4 and Section JSP.5.5

• Corrected the inconsistency on the precompilation protocol in
Section JSP.11.4.2 regarding whether the requests are delivered to the page or
not; they are not.

• Clarified that the <type> subelement of <attribute> in the TLD file should
match that of the underlying JavaBean component property.

• Spelled out the use of ClassLoader.getResource() to get at data from a TagLi-
braryValidator class.

JSP.E.17Changes Between 1.2 PFD 1b and PFD 2

Change bars are used in almost all chapters to indicate changes between PFD 1b
and PFD 2. The exception are Chapters 12 and 13 which are generated automati-
cally from the Java sources and have no change bars. Most changes are semantical,
but some of them are editorial.

E.17.66Added elements to Tag Library Descriptor

The Tag Library Descriptor (TLD) was extended with descriptive information
that is useful to users of the tag library. In particular, a TLD can now be massaged
directly (e.g. using an XSLT stylesheet) into an end-user document.

A new <example> element was added, as an optional subelement of <tag>.
The existing <description> element was made a valid optional subelement of
<variable>, <attribute> and <validator>.

Section JSP.7.3 and Appendix JSP.B were affected. The TLD 1.2 DTD and
Schemas were also affected.

E.17.67Changed the way version information is encoded into TLD

The mechanism used to provide version information on the TLD was changed.
In the PFD the version was encoded into the namespace. In PFD2 the namespace is
not intended to change unless there are non-compatible changes, and the version is

3-129

JavaServer Pages 2.1 Specification

encoded into the <jsp-version> element, which is now mandatory. The new URI for
the namespace is "http://java.sun.com/JSP/TagLibraryDescriptor".

Chapter JSP.7 and Appendix JSP.B were affected.

E.17.68Assigning String literals to Object attributes

It is now possible to assign string literals to an attribute that is defined as having
type Object, as well as to a property of type Object. The valid type conversions are
now all described in Section JSP.1.14.2, and used by reference in the semantics of
<jsp:setProperty>.

E.17.69Clarification on valid names for prefix, action and attributes

We clarified the valid names for prefixes used in taglib directives, element
names used in actions, and attribute names.

E.17.70Clarification of details of empty actions

The JSP 1.1 specification distinguishes empty from non-empty actions,
although the description could be better. Unfortunately, the JSP 1.2 PFD1 draft did
not improve the description. This draft improves the description by making it clear
what methods are invoked when.

Chapters 1, 7 and 13 were affected.

E.17.71Corrections related to XML syntax

We clarified several issues related to the XML syntax for JSP pages and to the
XML view of a JSP page. Most changes are in Chapter JSP.6.

• Removed an inexistant flush attribute in the include directive at Chapter JSP.6.

• Clarified that JSP comments in a JSP page in JSP syntax are not preserved on
the XML view of the page.

• Clarified that JSP pages in XML syntax should have no DOCTYPE.

• Clarified the treatment of include directives in the XML view of a JSP page.

• Clarified the format of the URIs to use in xmlns attributes for taglib directives,
and corrected Appendix JSP.B.

3-130

JavaServer Pages 2.1 Specification

E.17.72Other changes

We clarified several other inconsistencies or mistakes

• Explicitly indicated which attributes are reserved (Section JSP.1.3.5) and
which prefixes are reserved (Section JSP.1.10.2).

• Add a comment to the DTD for the TLD indicating that a DOCTYPE is needed
and what its value is. No changes to the value.

• Removed the paragraph at the end of Section JSP.7.3.9 that used to contain
non-normative comments on the future of "well kwown URIs".

• Corrected the description of the valid values that can be passed to the flush at-
tribute of the include action in Section JSP.5.4.

• Clarified that <jsp:param> can only appear within <jsp:forward>, <jsp:in-
clude>, and <jsp:params>.

• Clarified that <jsp:params> and <jsp:fallback> can only appear within
<jsp:plugin>.

• Resolved a conflict in Section JSP.5.4 between the Servlet and the JSP speci-
fication regarding how to treat modifications to headers in included actions.

• Section 10.1.1 in PFD1 incorrectly described the valid return values for
doStartTag() in tag handlers that implement the BodyTag interface. The cor-
rect valid values are SKIP_BODY, EVAL_BODY_INCLUDE and
EVAL_BODY_BUFFER. Section now indicates this.

JSP.E.18Changes Between 1.2 PFD and 1.2 PFD 1b

PFD 1b is a draft that has mostly formating and a few editorial changes. This
draft is shown only to make it simpler to correlate changes between later drafts and
the previous drafts.

Change bars are used to indicate changes between PFD 1 and PFD 1b.

JSP.E.19Changes Between 1.2 PD1 and 1.2 PFD

The following changes ocurred between the Public Draft 1 and the Proposed
Final Draft versions of the JSP 1.2 specification.

3-131

JavaServer Pages 2.1 Specification

E.19.73Deletions

• Removed the resetCustomAttributes() method.

E.19.74Additions

• Added constructors and methods to JspException to support a rootCause (par-
alleling the ServletException).

• Added a PageContext.handleException(Throwable) method.

• Added references to JSR-045 regarding debugging support.

• Added new TryCatchFinally interface to provide better control over excep-
tions in tag handlers.

• Added an implicit URI to TLD map for packaged tag libraries. This also pro-
vides support for multiple TLDs inside a single JAR file.

• Added pageEncoding attribute to page directive.

• Added material to Chapter JSP.4.

• Added TagValidatorInfo class.

• Added Section JSP.1.1.9 with a suggestion on extension convention for top
and included JSP files.

E.19.75Clarifications

• A tag handler object can be created with a simple “new()”; it needs not be a
fully fledged Beans, supporting the complete behavior of the ja-
va.beans.Beans.instantiate() method.

• Removed the “recommendation” that the <uri> element in a TLD be a URL to
anything.

• Clarified that extension dependency information in packaged tag libraries
should be honored.

• Clarified invocation and lifecycle of TagLibraryValidator.

• Clarified where TLDs may appear in a packaged JAR file.

• Clarified when are response.getWriter().

3-132

JavaServer Pages 2.1 Specification

E.19.76Changes

• Moved a couple of chapters around

• Improved and clarified Chapter JSP.6.

• Moved the include directive back into Chapter JSP.1.

• Renamed javax.servlet.jsp.tagext.PageInfo to javax.servlet.jsp.tagext.PageDa-
ta (for consistency with existing TagData).

• Added initialization parameters to TagLibraryInformation validation in TLD,
adding a new <validator> element, renaming <validatorclass> to <validator-
class> for consistency, and adding <init-param> as in the Servlet web.xml de-
scriptor.

• Added method to pass the initialization parameters to the validator class and
removed the use of TagLibraryInfo. Added prefix and uri String arguments to
validate() method.

• Changed element names in TLD to consistently follow convention. New
names are <tag-class>. <tei-class>, <tlib-version, <jsp-version>, <short-
name> and <body-content>. <info> was renamed <description>.

JSP.E.20Changes Between 1.1 and 1.2 PD1

The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

E.20.77Organizational Changes

• Chapter 8 and 10 are now generated automatically from the javadoc sources.

• Created a new document to allow longer descriptions of uses of the technolo-
gy.

• Created a new I18N chapter to capture Servlet 2.3 implications and others
(mostly empty for PD1).

• Removed Implementation Notes and Future appendices, as they have not been
updated yet.

3-133

JavaServer Pages 2.1 Specification

E.20.78New Document

We created a new, non-normative document, “Using JSP Technology”. The
document is still being updated to JSP 1.2 and Servlet 2.3. We moved to this docu-
ment the following:

• Some of the non-normative Overview material.

• All of the appendix on tag library examples.

• Some of the material on the Tag Extensions chapter.

E.20.79Additions to API

• jsp:include can now indicate “flush=’false’”.

• Made the XML view of a JSP page available for input, and for validation.

• PropertyEditor.setAsText() can now be used to convert from a literal string at-
tribute value.

• New ValidatorClass and JspPage classes for validation against tag libraries.

• New IteratorTag interface to support iteration without BodyContent. Added
two new constants (EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN)
to help document better how the tag protocol works; they are carefully de-
signed so that old tag handlers will still work unchanged, but the old name for
the constant EVAL_BODY_TAG is now deprecated.

• Added listener classes to the TLD.

• Added elements to the TLD to avoid having to write TagExtraInfo classes in
the most common cases.

• Added a resetCustomAttributes() method to Tag interface.

• Added elements to the TLD for delivering icons and descriptions to use in au-
thoring tools.

3-134

JavaServer Pages 2.1 Specification

E.20.80Clarifications

• Incorporated errata 1.1_a and (in progress) 1.1_b.

E.20.81Changes

• JSP 1.2 is based on Servlet 2.3, in particular:

• JSP 1.2 is based on the Java 2 platform.

JSP.E.21Changes Between 1.0 and 1.1

The JSP 1.1 specification builds on the JSP 1.0 specification. The following
changes ocurred between the JSP 1.0 final specification and the JSP 1.1 final specifi-
cation.

E.21.82Additions

• Added a portable tag extension mechanism with an XML-based Tag Library
Descriptor, and a run-time stack of tag handlers. Tag handers are based on the
JavaBeans component model. Adjusted the semantics of the uri attribute in
taglib directives.

• Flush is now a mandatory attribute of jsp:include, and the only valid value is
“true”.

• Added parameters to jsp:include and jsp:forward.

• Enabled the compilation of JSP pages into Servlet classes that can be trans-
ported from one JSP container to another. Added appendix with an example
of this.

• Added a precompilation protocol.

• Added pushBody() and popBody() to PageContext.

• Added JspException and JspTagException classes.

• Consistent use of the JSP page, JSP container, and similar terms.

• Added a Glossary as Appendix JSP.E, “Changes”.

• Expanded Chapter 1 so as to cover 0.92’s "model 1" and "model 2".

• Clarified a number of JSP 1.0 details.

3-135

JavaServer Pages 2.1 Specification

E.21.83Changes

• Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including
distributable JSP pages.

• jsp:plugin no longer can be implemented by just sending the contents of
jsp:fallback to the client.

• Reserved all request parameters starting with "jsp".

3-136

JavaServer Pages 2.1 Specification

3-137JavaServer Pages 2.1 Specification

A P P E N D I X JSP.F
Glossary

This appendix is a glossary of the main concepts mentioned in this specifica-
tion. This appendix is non-normative.

action An element in a JSP page that can act on implicit objects and other
server-side objects or can define new scripting variables. Actions follow the
XML syntax for elements with a start tag, a body and an end tag; if the body is
empty it can also use the empty tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always
available to a JSP file without being imported.

action, custom An action described in a portable manner by a tag library descrip-
tor and a collection of Java classes and imported into a JSP page by a taglib
directive.

Application Assembler A person that combines JSP pages, servlet classes,
HTML content, tag libraries, and other Web content into a deployable Web
application.

classic tag handler A tag handler that implements the javax.servlet.jsp.tagext.Tag

interface.

component contract The contract between a component and its container,
including life cycle management of the component and the APIs and proto-
cols that the container must support.

Component Provider A vendor that provides a component either as Java classes
or as JSP page source.

3-138

JavaServer Pages 2.1 Specification

distributed container A JSP container that can run a Web application that is
tagged as distributable and is spread across multiple Java virtual machines
that might be running on different hosts.

declaration A scripting element that declares methods, variables, or both in a
JSP page. Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container
and is interpreted at translation time. Syntactically it is delimited by the <%@

and %> characters.

dynamic attribute An attribute, passed to a custom action, whose name is not
explicitly declared in the tag library descriptor.

element A portion of a JSP page that is recognized by the JSP translator. An ele-
ment can be a directive, an action, or a scripting element.

EL expression An element in a JSP page representing an expression to be parsed
and evaluated via the JSP Expression Language. Syntactically it is delimited
by the ${ and } characters.

expression Either a scripting expression or an EL expression.

fixed template data Any portions of a JSP file that are not described in the JSP
specification, such as HTML tags, XML tags, and text. The template data is
returned to the client in the response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is
always available in a JSP file without being declared. The implicit objects are
request, response, pageContext, session, application, out, config, page, and
exception for scriptlets and scripting expressions. The implicit objects are
pageContext, pageScope, requestScope, sessionScope, applicationScope,
param, paramValues, header, headerValues, cookie and initParam for EL
expressions.

JavaServer Pages technology An extensible Web technology that uses template
data, custom elements, scripting languages, and server-side Java objects to
return dynamic content to a client. Typically the template data is HTML or
XML elements, and in many cases the client is a Web browser.

JSP container A system-level entity that provides life cycle management and
runtime support for JSP and servlet components.

JSP configuration The deployment-time process by which the JSP container is
declaratively configured using a deployment descriptor.

3-139

JavaServer Pages 2.1 Specification

JSP file A text file that contains JSP elements, forming a complete JSP page or
just a partial page that must be combined with other JSP files to form a com-
plete page. Most top-level JSP files have a .jsp extension, but other extensions
can be configured as well.

JSP fragment A portion of JSP code, translated into an implementation of the
javax.servlet.jsp.JspFragment abstract class.

JSP page One or more JSP files that form a syntactically complete description
for processing a request to create a response.

JSP page, frontA JSP page that receives an HTTP request directly from the cli-
ent. It creates, updates, and/or accesses some server-side data and then for-
wards the request to a presentation JSP page.

JSP page, presentation A JSP page that is intended for presentation purposes
only. It accesses and/or updates some server-side data and incorporates fixed
template data to create content that is sent to the client.

JSP page implementation class The Java programming language class, a servlet,
that is the runtime representation of a JSP page and which receives the request
object and updates the response object. The page implementation class can
use the services provided by the JSP container, including both the servlet and
the JSP APIs.

JSP page implementation object The instance of the JSP page implementation
class that receives the request object and updates the response object.

JSP segment A portion of JSP code defined in a separate file, and imported into
a page using the include directive.

named attribute A standard or custom action attribute whose value is defined
using the <jsp:attribute> standard action.

scripting element A declaration, scriptlet, or expression, whose tag syntax is
defined by the JSP specification, and whose content is written according to the
scripting language used in the JSP page. The JSP specification describes the
syntax and semantics for the case where the language page attribute is java.

scripting expression A scripting element that contains a valid scripting lan-
guage expression that is evaluated, converted to a String, and placed into the
implicit out object. Syntactically it is delimited by the <%= and %> characters.

scriptlet An scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes what

3-140

JavaServer Pages 2.1 Specification

is a valid scriptlet for the case where the language page attribute is java. Syn-
tactically a scriptlet is delimited by the <% and %> characters.

simple tag handler A tag handler that implements the javax.serv-

let.jsp.tagext.SimpleTag interface.

tag A piece of text between a left angle bracket and a right angle bracket that has
a name, can have attributes, and is part of an element in a JSP page. Tag
names are known to the JSP translator, either because the name is part of the
JSP specification (in the case of a standard action), or because it has been
introduced using a Tag Library (in the case of custom action).

text-based document that uses fixed template data and JSP elements to define a
custom action. The semantics of a tag file are realized at runtime by a tag
handler.tag library A collection of custom actions described by a tag library

descriptor and Java classes.

tag library descriptor An XML document describing a tag library.

Tag Library Provider A vendor that provides a tag library. Typical examples
may be a JSP container vendor, a development group within a corporation, a
component vendor, or a service vendor that wants to provide easier use of
their services.

web application An application built for the Internet, an intranet, or an extranet.

web application, distributable A Web application that is written so that it can be
deployed in a Web container distributed across multiple Java virtual machines
running on the same host or different hosts. The deployment descriptor for
such an application uses the distributable element.

Web Application Deployer A person who deploys a Web application in a Web
container, specifying at least the root prefix for the Web application, and in a
Java EE environment, the security and resource mappings.

web component A servlet class or JSP page that runs in a JSP container and pro-
vides services in response to requests.

Web Container Provider A vendor that provides a servlet and JSP container that
support the corresponding component contracts.

	Contents
	JSP.1 Core Syntax and Semantics 1-3
	JSP.2 Expression Language 1-65
	JSP.3 JSP Configuration 1-77
	JSP.4 Internationalization Issues 1-87
	JSP.5 Standard Actions 1-93
	JSP.6 JSP Documents 1-125
	JSP.7 Tag Extensions 1-143
	JSP.8 Tag Files 1-169
	JSP.9 Scripting 1-193
	JSP.10 XML View 1-199
	JSP.11 JSP Container 2-3
	JSP.12 Core API 2-17
	JSP.13 Tag Extension API 2-67
	JSP.14 Expression Language API 2-169
	JSP.A Packaging JSP Pages 3-3
	JSP.B JSP Elements of web.xml 3-7
	JSP.C Tag Library Descriptor Formats 3-23
	JSP.D Page Encoding Detection 3-93
	JSP.E Changes 3-99
	JSP.F Glossary 3-137

	Status
	Preface
	Overview
	The JavaServer Pages™ Technology
	Basic Concepts
	Users of JavaServer Pages

	Part I
	Core Syntax and Semantics
	JSP.1.1 What Is a JSP Page
	JSP.1.1.1 Web Containers and Web Components
	JSP.1.1.2 Generating HTML
	JSP.1.1.3 Generating XML
	JSP.1.1.4 Translation and Execution Phases
	JSP.1.1.5 Validating JSP pages
	JSP.1.1.6 Events in JSP Pages
	JSP.1.1.7 JSP Configuration Information
	JSP.1.1.8 Naming Conventions for JSP Files
	JSP.1.1.9 Compiling JSP Pages
	JSP.1.1.10 Debugging JSP Pages

	JSP.1.2 Web Applications
	JSP.1.2.1 Relative URL Specifications

	JSP.1.3 Syntactic Elements of a JSP Page
	JSP.1.3.1 Elements and Template Data
	JSP.1.3.2 Element Syntax
	JSP.1.3.3 Start and End Tags
	JSP.1.3.4 Empty Elements
	JSP.1.3.5 Attribute Values
	JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements
	JSP.1.3.7 Valid Names for Actions and Attributes
	JSP.1.3.8 White Space
	JSP.1.3.9 JSP Documents
	JSP.1.3.10 JSP Syntax Grammar

	JSP.1.4 Error Handling
	JSP.1.4.1 Translation Time Processing Errors
	JSP.1.4.2 Request Time Processing Errors
	JSP.1.4.3 Using JSPs as Error Pages

	JSP.1.5 Comments
	JSP.1.5.1 Comments in JSP Pages in Standard Syntax
	JSP.1.5.2 Comments in JSP Documents

	JSP.1.6 Quoting and Escape Conventions
	JSP.1.7 Overall Semantics of a JSP Page
	JSP.1.8 Objects
	JSP.1.8.1 Objects and Variables
	JSP.1.8.2 Objects and Scopes
	JSP.1.8.3 Implicit Objects
	JSP.1.8.4 The pageContext Object

	JSP.1.9 Template Text Semantics
	JSP.1.10 Directives
	JSP.1.10.1 The page Directive
	JSP.1.10.2 The taglib Directive
	JSP.1.10.3 The include Directive
	JSP.1.10.4 Implicit Includes
	JSP.1.10.5 Including Data in JSP Pages
	JSP.1.10.6 Additional Directives for Tag Files

	JSP.1.11 EL Elements
	JSP.1.12 Scripting Elements
	JSP.1.12.1 Declarations
	JSP.1.12.2 Scriptlets
	JSP.1.12.3 Expressions

	JSP.1.13 Actions
	JSP.1.14 Tag Attribute Interpretation Semantics
	JSP.1.14.1 Request Time Attribute Values
	JSP.1.14.2 Type Conversions

	Expression Language
	JSP.2.1 Syntax of expressions in JSP pages: ${} vs #{}
	JSP.2.2 Expressions and Template Text
	JSP.2.3 Expressions and Attribute Values
	JSP.2.3.1 Static Attribute
	JSP.2.3.2 Dynamic Attribute
	JSP.2.3.3 Deferred Value
	JSP.2.3.4 Deferred Method
	JSP.2.3.5 Dynamic Attribute or Deferred Expression
	JSP.2.3.6 Examples of Using ${} and #{}

	JSP.2.4 Implicit Objects
	JSP.2.5 Deactivating EL Evaluation
	JSP.2.6 Disabling Scripting Elements
	JSP.2.7 Invalid EL expressions
	JSP.2.8 Errors, Warnings, Default Values
	JSP.2.9 Resolution of Variables and their Properties
	JSP.2.10 Functions
	JSP.2.10.1 Invocation Syntax
	JSP.2.10.2 Tag Library Descriptor Information
	JSP.2.10.3 Example
	JSP.2.10.4 Semantics

	JSP Configuration
	JSP.3.1 JSP Configuration Information in web.xml
	JSP.3.2 Taglib Map
	JSP.3.3 JSP Property Groups
	JSP.3.3.1 JSP Property Groups
	JSP.3.3.2 Deactivating EL Evaluation
	JSP.3.3.3 Disabling Scripting Elements
	JSP.3.3.4 Declaring Page Encodings
	JSP.3.3.5 Defining Implicit Includes
	JSP.3.3.6 Denoting XML Documents
	JSP.3.3.7 Deferred Syntax (character sequence #{)
	JSP.3.3.8 Removing whitespaces from template text

	Internationalization Issues
	JSP.4.1 Page Character Encoding
	JSP.4.1.1 Standard Syntax
	JSP.4.1.2 XML Syntax

	JSP.4.2 Response Character Encoding
	JSP.4.3 Request Character Encoding
	JSP.4.4 XML View Character Encoding
	JSP.4.5 Delivering Localized Content

	Standard Actions
	JSP.5.1 <jsp:useBean>
	JSP.5.2 <jsp:setProperty>
	JSP.5.3 <jsp:getProperty>
	JSP.5.4 <jsp:include>
	JSP.5.5 <jsp:forward>
	JSP.5.6 <jsp:param>
	JSP.5.7 <jsp:plugin>
	JSP.5.8 <jsp:params>
	JSP.5.9 <jsp:fallback>
	JSP.5.10 <jsp:attribute>
	JSP.5.11 <jsp:body>
	JSP.5.12 <jsp:invoke>
	JSP.5.12.1 Basic Usage
	JSP.5.12.2 Storing Fragment Output
	JSP.5.12.3 Providing a Fragment Access to Variables

	JSP.5.13 <jsp:doBody>
	JSP.5.14 <jsp:element>
	JSP.5.15 <jsp:text>
	JSP.5.16 <jsp:output>
	JSP.5.17 Other Standard Actions

	JSP Documents
	JSP.6.1 Overview of JSP Documents and of XML Views
	JSP.6.2 JSP Documents
	JSP.6.2.1 Identifying JSP Documents
	JSP.6.2.2 Overview of Syntax of JSP Documents
	JSP.6.2.3 Semantic Model
	JSP.6.2.4 JSP Document Validation

	JSP.6.3 Syntactic Elements in JSP Documents
	JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries
	JSP.6.3.2 The jsp:root Element
	JSP.6.3.3 The jsp:output Element
	JSP.6.3.4 The jsp:directive.page Element
	JSP.6.3.5 The jsp:directive.include Element
	JSP.6.3.6 Additional Directive Elements in Tag Files
	JSP.6.3.7 Scripting Elements
	JSP.6.3.8 Other Standard Actions
	JSP.6.3.9 Template Content
	JSP.6.3.10 Dynamic Template Content

	JSP.6.4 Examples of JSP Documents
	JSP.6.4.1 Example: A simple JSP document
	JSP.6.4.2 Example: Generating Namespace-aware documents
	JSP.6.4.3 Example: Generating non-XML documents
	JSP.6.4.4 Example: Using Custom Actions and Tag Files

	JSP.6.5 Possible Future Directions for JSP documents
	JSP.6.5.1 Generating XML Content Natively
	JSP.6.5.2 Schema and XInclude Support

	Tag Extensions
	JSP.7.1 Introduction
	JSP.7.1.1 Goals
	JSP.7.1.2 Overview
	JSP.7.1.3 Classic Tag Handlers
	JSP.7.1.4 Simple Examples of Classic Tag Handlers
	JSP.7.1.5 Simple Tag Handlers
	JSP.7.1.6 JSP Fragments
	JSP.7.1.7 Simple Examples of Simple Tag Handlers
	JSP.7.1.8 Attributes With Dynamic Names
	JSP.7.1.9 Event Listeners
	JSP.7.1.10 JspId Attribute
	JSP.7.1.11 Resource Injection

	JSP.7.2 Tag Libraries
	JSP.7.2.1 Packaged Tag Libraries
	JSP.7.2.2 Location of Java Classes
	JSP.7.2.3 Tag Library directive

	JSP.7.3 The Tag Library Descriptor
	JSP.7.3.1 Identifying Tag Library Descriptors
	JSP.7.3.2 TLD resource path
	JSP.7.3.3 Taglib Map in web.xml
	JSP.7.3.4 Implicit Map Entries from TLDs
	JSP.7.3.5 Implicit Map Entries from the Container
	JSP.7.3.6 Determining the TLD Resource Path
	JSP.7.3.7 Translation-Time Class Loader
	JSP.7.3.8 Assembling a Web Application
	JSP.7.3.9 Well-Known URIs
	JSP.7.3.10 Tag and Tag Library Extension Elements

	JSP.7.4 Validation
	JSP.7.4.1 Translation-Time Mechanisms
	JSP.7.4.2 Request-Time Errors

	JSP.7.5 Conventions and Other Issues
	JSP.7.5.1 How to Define New Implicit Objects
	JSP.7.5.2 Access to Vendor-Specific information
	JSP.7.5.3 Customizing a Tag Library

	Tag Files
	JSP.8.1 Overview
	JSP.8.2 Syntax of Tag Files
	JSP.8.3 Semantics of Tag Files
	JSP.8.4 Packaging Tag Files
	JSP.8.4.1 Location of Tag Files
	JSP.8.4.2 Packaging in a JAR
	JSP.8.4.3 Packaging Directly in a Web Application
	JSP.8.4.4 Packaging as Precompiled Tag Handlers

	JSP.8.5 Tag File Directives
	JSP.8.5.1 The tag Directive
	JSP.8.5.2 The attribute Directive
	JSP.8.5.3 The variable Directive

	JSP.8.6 Tag Files in XML Syntax
	JSP.8.7 XML View of a Tag File
	JSP.8.8 Implicit Objects
	JSP.8.9 Variable Synchronization
	JSP.8.9.1 Synchronization Points
	JSP.8.9.2 Synchronization Examples

	Scripting
	JSP.9.1 Overall Structure
	JSP.9.1.1 Valid JSP Page
	JSP.9.1.2 Reserved Names
	JSP.9.1.3 Implementation Flexibility

	JSP.9.2 Declarations Section
	JSP.9.3 Initialization Section
	JSP.9.4 Main Section
	JSP.9.4.1 Template Data
	JSP.9.4.2 Scriptlets
	JSP.9.4.3 Expressions
	JSP.9.4.4 Actions

	XML View
	JSP.10.1 XML View of a JSP Document, JSP Page or Tag File
	JSP.10.1.1 JSP Documents and Tag Files in XML Syntax
	JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax
	JSP.10.1.3 JSP Comments
	JSP.10.1.4 The page Directive
	JSP.10.1.5 The taglib Directive
	JSP.10.1.6 The include Directive
	JSP.10.1.7 Declarations
	JSP.10.1.8 Scriptlets
	JSP.10.1.9 Expressions
	JSP.10.1.10 Standard and Custom Actions
	JSP.10.1.11 Request-Time Attribute Expressions
	JSP.10.1.12 Template Text and XML Elements
	JSP.10.1.13 The jsp:id Attribute
	JSP.10.1.14 The tag Directive
	JSP.10.1.15 The attribute Directive
	JSP.10.1.16 The variable Directive

	JSP.10.2 Validating an XML View of a JSP page
	JSP.10.3 Examples
	JSP.10.3.1 A JSP document
	JSP.10.3.2 A JSP page and its corresponding XML View
	JSP.10.3.3 Clearing Out Default Namespace on Include
	JSP.10.3.4 Taglib Direcive Adds to Global Namespace
	JSP.10.3.5 Collective Application of Inclusion Semantics

	Part II
	JSP Container
	JSP.11.1 JSP Page Model
	JSP.11.1.1 Protocol Seen by the Web Server

	JSP.11.2 JSP Page Implementation Class
	JSP.11.2.1 API Contracts
	JSP.11.2.2 Request and Response Parameters
	JSP.11.2.3 Omitting the extends Attribute
	JSP.11.2.4 Using the extends Attribute

	JSP.11.3 Buffering
	JSP.11.4 Precompilation
	JSP.11.4.1 Request Parameter Names
	JSP.11.4.2 Precompilation Protocol

	JSP.11.5 Debugging Requirements
	JSP.11.5.1 Line Number Mapping Guidelines

	Core API
	javax.servlet.jsp
	ErrorData
	HttpJspPage
	JspApplicationContext
	JspContext
	JspEngineInfo
	JspException
	JspFactory
	JspPage
	JspTagException
	JspWriter
	PageContext
	SkipPageException

	Tag Extension API
	javax.servlet.jsp.tagext
	BodyContent
	BodyTag
	BodyTagSupport
	DynamicAttributes
	FunctionInfo
	IterationTag
	JspFragment
	JspIdConsumer
	JspTag
	PageData
	SimpleTag
	SimpleTagSupport
	Tag
	TagAdapter
	TagAttributeInfo
	TagData
	TagExtraInfo
	TagFileInfo
	TagInfo
	TagLibraryInfo
	TagLibraryValidator
	TagSupport
	TagVariableInfo
	TryCatchFinally
	ValidationMessage
	VariableInfo

	Expression Language API
	javax.servlet.jsp.el
	ELException
	ELParseException
	Expression
	ExpressionEvaluator
	FunctionMapper
	ImplicitObjectELResolver
	ScopedAttributeELResolver
	VariableResolver

	Part III
	Packaging JSP Pages
	JSP.A.1 A Very Simple JSP Page
	JSP.A.2 The JSP Page Packaged as Source in a WAR File
	JSP.A.3 The Servlet for the Compiled JSP Page
	JSP.A.4 The Web Application Descriptor
	JSP.A.5 The WAR for the Compiled JSP Page

	JSP Elements of web.xml
	JSP.B.1 XML Schema for JSP 2.1 Deployment Descriptor
	JSP.B.2 XML Schema for JSP 2.0 Deployment Descriptor

	Tag Library Descriptor Formats
	JSP.C.1 XML Schema for TLD, JSP 2.1
	JSP.C.2 XML Schema for TLD, JSP 2.0
	JSP.C.3 DTD for TLD, JSP 1.2
	JSP.C.4 DTD for TLD, JSP 1.1

	Page Encoding Detection
	JSP.D.1 Detection Algorithm for JSP pages
	JSP.D.2 Detection Algorithm for Tag Files

	Changes
	JSP.E.1 Changes between JSP 2.1 Proposed Final Draft 2 and JSP 2.1 Final Release
	JSP.E.2 Changes between JSP 2.1 Proposed Final Draft and JSP 2.1 Proposed Final Draft 2
	E.2.1 Resource Injection
	E.2.2 JSP document syntax and the DOCTYPE prologue
	E.2.3 Page Character Encoding
	E.2.4 EL Resolvers
	E.2.5 JSP Version of Tag Files
	E.2.6 Unsupported Tag Directive and Attribute Directive Attributes in Pre-2.1 Tag Files
	E.2.7 Static Attribute

	JSP.E.3 Changes between JSP 2.1 Public Review and JSP 2.1 Proposed Final Draft
	E.3.8 Resource Injection
	E.3.9 Deferred expressions in tag files
	E.3.10 Deferred expressions for dynamic attributes
	E.3.11 ResourceBundleELResolver
	E.3.12 Clarified required support for JSR-45 ("Debugging Support for Other Languages")
	E.3.13 Byte Order Mark and Page Encoding
	E.3.14 TagAttributeInfo
	E.3.15 Taglib map order of precedence
	E.3.16 Generics
	E.3.17 Various Clarifications

	JSP.E.4 Changes between JSP 2.1 EDR and JSP 2.1 Public Review
	E.4.18 Backwards Compatibility with JSP 2.0
	E.4.19 Faces Action Attribute and MethodExpression
	E.4.20 Additional element for the TLD
	E.4.21 New JspId attribute
	E.4.22 Removing whitespaces from template text
	E.4.23 Response Status Code for JSP error page
	E.4.24 Comments in JSP Documents
	E.4.25 Byte Order Mark and Page Encoding
	E.4.26 TagLibraryInfo
	E.4.27 SimpleTag and <body-content>
	E.4.28 JspApplicationContext.addResolver()
	E.4.29 Duplicate tag files
	E.4.30 Table 1-9
	E.4.31 Restructuring of API chapters

	JSP.E.5 Changes between JSP 2.0 Final and JSP 2.1 EDR1
	E.5.32 New specification document for the Expression Language
	E.5.33 Backwards Compatibility and Migration Guidelines
	E.5.34 Chapter 2 - Expression Language
	E.5.35 New class javax.servlet.jsp.JspApplicationContext
	E.5.36 New method getJspApplicationContext on JspFactory
	E.5.37 Major changes to the javax.servlet.jsp.el API
	E.5.38 New method getELContext on JspContext
	E.5.39 New rules for tag handler attributes
	E.5.40 TLD schema now supports deferred expressions as attributes
	E.5.41 Syntax of EL expressions
	E.5.42 Constraints on the use of ${} and #{}
	E.5.43 Escaping EL expressions

	JSP.E.6 Changes between JSP 2.0 PFD3 and JSP 2.0 Final
	JSP.E.7 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3
	JSP.E.8 Changes between JSP 2.0 PFD and JSP 2.0 PFD2
	JSP.E.9 Changes between JSP 2.0 PFD1a and JSP 2.0 PFD
	JSP.E.10 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a
	JSP.E.11 Changes between JSP 2.0 PD1 and JSP 2.0 PD2
	JSP.E.12 Changes between JSP 2.0 CD2 and JSP 2.0 PD1
	JSP.E.13 Changes between JSP 2.0 CD1 and JSP 2.0 CD2
	E.13.44 Between CD2c and CD2
	E.13.45 Between CD2b and CD2c
	E.13.46 Between CD2a and CD2b
	E.13.47 Changes between CD1 and CD2a

	JSP.E.14 Changes between JSP 2.0 ED1 and JSP 2.0 CD1
	E.14.48 JSP Fragments, .tag Files, and Simple Tag Handlers
	E.14.49 Expression Language Added
	E.14.50 EBNF Fixes
	E.14.51 I18N Clarifications
	E.14.52 Other Changes

	JSP.E.15 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1
	E.15.53 Typographical Fixes and Version Numbers
	E.15.54 Added EBNF Grammar for JSP Standard Syntax
	E.15.55 Added Users of JavaServer Pages Section
	E.15.56 Added Placeholders for Expression Language and Custom Actions Using JSP
	E.15.57 Added Requirement for Debugging Support

	JSP.E.16 Changes Between PFD 2 and Final Draft
	E.16.58 Added jsp:id mechanism
	E.16.59 Other Small Changes
	E.16.60 Clarification of role of id
	E.16.61 Clarifications on Multiple Requests and Threading
	E.16.62 Clarifications on JSP Documents
	E.16.63 Clarifications on Well Known Tag Libraries
	E.16.64 Clarified Impact of Blocks
	E.16.65 Other Small Clarifications

	JSP.E.17 Changes Between 1.2 PFD 1b and PFD 2
	E.17.66 Added elements to Tag Library Descriptor
	E.17.67 Changed the way version information is encoded into TLD
	E.17.68 Assigning String literals to Object attributes
	E.17.69 Clarification on valid names for prefix, action and attributes
	E.17.70 Clarification of details of empty actions
	E.17.71 Corrections related to XML syntax
	E.17.72 Other changes

	JSP.E.18 Changes Between 1.2 PFD and 1.2 PFD 1b
	JSP.E.19 Changes Between 1.2 PD1 and 1.2 PFD
	E.19.73 Deletions
	E.19.74 Additions
	E.19.75 Clarifications
	E.19.76 Changes

	JSP.E.20 Changes Between 1.1 and 1.2 PD1
	E.20.77 Organizational Changes
	E.20.78 New Document
	E.20.79 Additions to API
	E.20.80 Clarifications
	E.20.81 Changes

	JSP.E.21 Changes Between 1.0 and 1.1
	E.21.82 Additions
	E.21.83 Changes

	Glossary

