
Simplified Guide to the

Java™ 2 Platform,

Enterprise Edition

Please send technical comments to: j2ee-spec-technical@eng.sun.com
Please send business comments to: j2ee-spec-business@eng.sun.com
901 San Antonio Road

Sun Microsystems, Inc.
Palo Alto, CA 94043 USA
650 960-1300 fax 650 969-9131

Please

Recycle

Copyright Information

 1999, Sun Microsystems, Inc. All rights reserved.

901 San Antonio Rd., Palo Alto, California 94303 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in any form by any means

without prior written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S. patents, foreign patents, or

pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun Logo, Java, JDBC, JavaBeans, Enterprise JavaBeans, JavaMail, JavaServer Pages, Java

Naming and Directory Interface, and Write Once, Run Anywhere are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS
DOCUMENT AT ANY TIME.

Contents

Introduction 1-1

What Is the Java™ 2 Platform, Enterprise Edition? 1-1

J2EE Application Model 1-2

The Java Technology Foundation 1-3

Security 1-3

The Middle Tier 1-4

The Client Tier 1-4

HTML Page Based Clients 1-5

HTTP Content Based Clients 1-5

Intranet Clients 1-6

Other Client Types 1-6

The Enterprise Information Systems 1-7

J2EE Declarations 1-7

J2EE Platform 1-8

J2EE Application Assembly and Deployment 1-8

Java Technology Standards for the J2EE Platform 1-9

IETF Standards for the J2EE Platform 1-9

CORBA Technology Standards for the J2EE Platform 1-10

J2EE Compatibility Test Suite 1-10
Contents iii

J2EE Reference Implementation 1-10

Example: A Web Store 2-1
iv Java® 2 Platform, Enterprise Edition Technical Overview (Sun Microsystems, Inc. Confidential)

Introduction

This document provides an introduction to the features and benefits of the Java 2

platform, Enterprise Edition.

What Is the Java™ 2 Platform, Enterprise
Edition?

Enterprises today need to extend their reach, reduce their costs, and lower their

response times by providing easy-to-access services to their customers, partners,

employees, and suppliers.

Typically, applications that provide these services must combine existing enterprise

information systems (EIS) with new business functions that deliver services to a

broad range of users. These services need to be:

■ Highly available, to meet the needs of today’s global business environment.

■ Secure, to protect the privacy of users and the integrity of enterprise data.

■ Reliable and scalable, to insure that business transactions are accurately and

promptly processed.

For a variety of reasons, these services are generally architected as distributed

applications consisting of several tiers, including clients on the front end, data

resources on the back end, and one or more middle tiers between them where the

majority of the application development work is done. The middle tier implements

the new services that integrate existing EISs with the business functions and data of

the new service. The middle tier shields the client tier from the complexity of the

enterprise and takes advantage of rapidly maturing Internet technologies to

minimize user administration and training.
1-1

The Java 2 platform, Enterprise Edition reduces the cost and complexity of

developing these multi-tier services, resulting in services that can be rapidly

deployed and easily enhanced as the enterprise responds to competitive pressures.

The Java 2 platform, Enterprise Edition (J2EE) achieves these benefits by defining a

standard architecture that is delivered as the following elements:

■ J2EE Application Programming Model - A standard programming model for

developing multi-tier, thin-client applications.

■ J2EE Platform - A standard platform for hosting J2EE applications, specified as a

set of required APIs and policies.

■ J2EE Compatibility Test Suite - A suite of compatibility tests for verifying that a

J2EE platform product is compatible with the J2EE platform standard.

■ J2EE Reference Implementation - A reference implementation for demonstrating

the capabilities of J2EE and for providing an operational definition of the J2EE

platform.

The following sections of this document describe each of these elements in greater

detail.

J2EE Application Model

J2EE is designed to support applications that implement enterprise services for

customers, employees, suppliers, partners, and others who make demands on or

contributions to the enterprise. Such applications are inherently complex, potentially

accessing data from a variety of sources and distributing applications to a variety of

clients.

To better control and manage these applications, the business functions to support

these various users are conducted in the middle tier. The middle tier represents an

environment that is closely controlled by an enterprise’s information technology

department. The middle tier is typically run on dedicated server hardware and has

access to the full services of the enterprise.

J2EE applications often rely on the EIS-Tier to store the enterprise’s business-critical

data. This data and the systems that manage it are at the inner-core of the enterprise.
1-2 Simplified Guide to J2EE • Sept, 1999

FIGURE 1 Two-Tier vs. Multi-Tier Application Models

Originally, the two-tier, client-server application model promised improved

scalability and functionality. Unfortunately, the complexity of delivering EIS services

directly to every user and the administrative problems caused by installing and

maintaining business logic on every user machine have proved to be major

limitations.

These two-tier limitations are avoided by implementing enterprise services as multi-

tier applications. Multi-tier applications provide the increased accessibility that is

now demanded by all elements of an enterprise. This shift is driving major

investments in the development of middle-tier software.

Developing multi-tier services has been complicated by the need to develop both the

service’s business function and the more complex infrastructure code required to

access databases and other system resources. Because each multi-tier server product

had its own application model, it was difficult to hire and train an experienced

development staff. In addition, as service volume increased it was often necessary to

change the whole multi-tier infrastructure, resulting in major porting costs and

delays.

The J2EE application model defines an architecture for implementing services as
multi-tier applications that avoid these problems and deliver the scalability,
accessibility, and manageability that is needed.

The J2EE application model partitions the work needed to implement a multi-tier

service into two parts: the business and presentation logic to be implemented by the

developer, and the standard system services provided by the J2EE platform. The

developer can rely on the platform to provide the solutions for the hard systems-

level problems of developing a middle-tier service.

The J2EE application model provides the benefits of Write Once, Run Anywhere™

portability and scalability for multi-tier applications. This standard model minimizes

the cost of developer training while providing the enterprise with a broad choice of

J2EE servers and development tools.

First-Tier

Client

EIS-Tier

data

Middle Tier

business
logic

Services

Server

First-Tier EIS-Tier

Client

business
logic

Server

data
Introduction 1-3

The J2EE application model is a major step forward in simplifying and expediting

application development, by minimizing the complexity of building multi-tier

applications.

Java Technology Foundation

The J2EE application model begins with the Java programming language and the

Java virtual machine. The proven portability, security, and developer productivity

they provide forms the basis of the application model.

The application model also includes the JavaBeans™ component model. JavaBeans

components make it easy to componentize the Java technology-based code for

common functions, then customize and combine these components visually with

JavaBeans development tools.

Security

While other enterprise application models require platform-specific security

measures in each application, the J2EE platform’s security environment enables

security constraints to be defined at deployment time. By shielding applications

from the complexity of implementing security, the J2EE platform makes them

portable to a wide variety of security implementations.

The J2EE platform defines standard declarative access control rules to be defined by

the application programmer/assembler and interpreted when the application is

deployed on the enterprise platform. J2EE also requires platform vendors to supply

standard login mechanisms so applications do not have to incorporate these

mechanisms into their logic. The same program works in a variety of different

security environments without change to the source code.

As an example, a J2EE application developer can specify several levels of security

(say user, super-user, and administrator), then write code to check the current user’s

permission level when accessing secure operations. At deployment time, the

Application Deployer assigns groups of users to the appropriate security levels,

enabling the application to easily verify permission level before performing the

restricted operations.
1-4 Simplified Guide to J2EE • Sept, 1999

The Middle Tier

The major benefit of the J2EE application model is in the middle tiers of multi-tier

applications. In the J2EE platform, middle-tier business functions are implemented

as Enterprise JavaBean™ components, as shown in FIGURE 2. These enterprise beans

allow service developers to concentrate on the business logic and let the EJB server

handle the complexities of delivering a reliable, scalable service.

FIGURE 2 EJB Components Implement Business Logic in the Middle Tier

JavaServer Pages™ technology and servlets present middle-tier functions to the

client tier as simple-to-access Internet-style services. JavaServer Pages (JSP)

technology makes it easy for user interface developers to present dynamically

generated pages to anyone with a browser. Servlets give more sophisticated

developers of Java technology-based applications the freedom to implement

dynamic presentations completely in the Java programming language.

The Client Tier

The J2EE platform supports several types of clients.

Many J2EE services will be designed to support web browser clients. These services

interact with their clients via dynamically generated HTML pages and forms.

More sophisticated services will interact with their first-tier clients by directly

exchanging business data. Here, JSPs and Servlets are used to format this business

data in a way that is easy for J2EE clients to work with. These clients can be both

Java applets running in a web browser and Java technology-based programs.

It is important to note that security is a key part of all multi-tier services. In J2EE,

security is handled almost entirely by the platform and its administrators. In most

cases, neither the service nor its clients require developer-written security logic.

Web
Client

EIS TierMiddle Tier

business
logic

User
Interface

Enterprise
Information

Services

EJB

JSP
Introduction 1-5

HTML Page Based Clients

A service can be presented directly to a user’s web browser as dynamically

generated HTML pages. JavaServer Pages technology is an easy way to dynamically

compose these pages using a familiar scripting paradigm that combines HTML and

Java technology-based code, as shown in FIGURE 3. In some cases, a service may

require some fairly complex code. This can be handled by placing code in a

JavaBeans component and calling it from a JSP. A service can also be directly

programmed in the Java programming language using a servlet.

FIGURE 3 Presenting Services Directly to a Browser

HTTP Content Based Clients

It is often useful to provide functionality directly at the client that helps a user

organize and interact with the service’s information. In this case, the service

exchanges raw content with the client instead of HTML pages. This content is

typically in the form of XML documents that are exchanged between the client and

the service using the HTTP protocol.

Typically this XML content is handled in the first-tier by JavaBeans components that

are provided by the service in an applet that is automatically downloaded into a

user’s browser, as shown in FIGURE 4. To avoid problems caused by old or non-

standard versions of the Java runtime environment in a user’s browser, the J2EE

application model provides special support for automatically downloading and

installing the Java Plug-in, Sun’s Java runtime environment that can be dynamically

loaded into the most popular browsers. This content can also be handled by a Java

Web Client

Middle Tier

business
logic

User
Interface

EJB

JSP

HTML/Forms
1-6 Simplified Guide to J2EE • Sept, 1999

technology-based program acting as a J2EE client. This flexible client model provides

the developer with a broad range of choices for presenting a distributed

application’s user interface on the internet.

FIGURE 4 Providing JavaBeans components to a Browser

Intranet Clients

Both HTML page based services and HTTP content based services can be effectively

used on an enterprise’s intranet as well as the Internet.

In addition, the intranet provides the extra infrastructure that allows Java programs

to directly access EJBs within the intranet domain.

Other Client Types

J2EE services presented via standard HTTP, HTML and XML are easily accessible to

all clients including Microsoft clients such as Visual Basic and Office 2000.

One goal of Enterprise JavaBeans technology is to define CORBA standard RMI-IIOP

as the required interoperability mechanism. This will make any J2EE service

available to any CORBA client, ensuring more complete integration between the

J2EE platform and existing enterprise information systems. While most elements of

this standard are complete there are a few items that are still in progress. After the

final work is complete, J2EE will add this interoperability requirement. In the

interim, many J2EE vendors will support the parts of the standard that are available.

In conjunction with J2EE, Sun will provide white papers and technology

demonstrations that illustrate techniques for integrating Microsoft COM objects with

EJBs using RMI-IIOP. These will cover how to access EJBs from first-tier clients such

as Visual Basic and Windows 2000 via COM, as well as using EJBs in combination

with middle-tier functions implemented in Microsoft Transaction Server.

Middle Tier

EJB

JSP/
Servlet

Browser

Java

Applet

Bean

Bean
Introduction 1-7

The Enterprise Information Systems

A service’s middle-tier business functions must access and update the information in

the EIS-tier.

The following standard Java service APIs provide basic access to these systems:

■ JDBC™ - the standard API for accessing relational data from Java.

■ Java Naming and Directory Interface™ (JNDI) - the standard API for accessing

information in enterprise name and directory services.

■ Java™ Message Service (JMS)1 - the standard API for sending and receiving

messages via enterprise messaging systems like IBM MQ Series and TIBCO

Rendezvous.

■ JavaMail™ - the standard API for sending E-mail.

■ JavaIDL - the standard API for calling CORBA services.

J2EE Declarations

An important goal of the J2EE application model is to minimize application

programming.

One of the ways that this is accomplished is to shift the burden of implementing

common tasks to the J2EE platform. These common tasks include enforcing an

application’s security roles, implementing its transaction semantics, and linking its

components to the resources and other components they require.

J2EE provides a simple, declarative way to specify these behaviors. These

declarations are separated from component code and stored in a deployment descriptor
that is part of the application package. These XML-based declarations enable

Application Deployers to modify the behavior of an application without having to

modify any of the components themselves.

J2EE Platform

The J2EE platform is the standard environment for running J2EE applications. The

J2EE platform is composed of the following elements:

■ J2EE deployment specification - a standard that defines a common way of

packaging applications for deployment on any J2EE compatible platform.

1. JMS is not required for J2EE 1.0; however, it will be made mandatory in a later release.
1-8 Simplified Guide to J2EE • Sept, 1999

■ Java technology standards for the J2EE platform - a set of standards that all J2EE

platform products must support.

■ IETF standards for the J2EE platform - a set of standards defined by the Internet

Engineering Task Force that all J2EE platform products must support.

■ CORBA standards for the J2EE platform - a set of CORBA standards upon which

the J2EE platform bases its middle-tier interoperability.

The J2EE platform defines the rich set of facilities that are needed to implement

enterprise-class, multi-tier services. The J2EE platform is based on proven, open

standards to deliver the broadest adoption and highest level of portability.

J2EE Application Assembly and Deployment

A J2EE application is packaged into one or more standard units for deployment to

any J2EE platform-compliant system. Each unit contains a functional component or

components (enterprise bean, JSP page, servlet, applet, etc.), a standard deployment

descriptor that describes its content, and the J2EE declarations which have been

specified by the application developer and assembler.

Once a J2EE unit has been produced, it is ready to be deployed to a J2EE platform,

as shown in FIGURE 5.

FIGURE 5 Deploying J2EE Applications

Deployment typically involves using a platform’s deployment tool to specify

location-specific information, such as a list of local users that can access it and the

name of the local database. Once deployed on the local platform, the application is

ready to run.

deploy.xml

EJB

Servlet

HTML

JSP
Deployment

Tool

Install
Components
Set
Transaction attributes

Security
ACLs
RunAs
Roles

Applet
Introduction 1-9

Java Technology Standards for the J2EE Platform

The primary element of the J2EE platform is the list of Java technology standards

that all J2EE products are required to support.

Since the J2EE platform is focused on the end-to-end development of enterprise

solutions, it goes beyond simply requiring that each Java API be supported. It

requires that each API be fully integrated with the platform. This insures that the

platform delivers a consistent end-to-end environment for the deployment of J2EE

applications.

IETF Standards for the J2EE Platform

The emergence of the Internet has had a major impact on the way enterprise

applications are developed. This revolution is based on standards set by the Internet

Engineering Task Force (IETF), including HTML, HTTP, and now XML, the internet

standard for communicating structured data.

The Java programming language, having grown up with IETF standards, has

become the preferred way of writing applications for them. The J2EE application

model and the J2EE platform continue this trend. In its current iteration, the J2EE

platform supports HTML and HTTP clients, and can support XML clients. In

addition, J2EE deployment descriptors make use of XML to provide application

information in a platform-independent way. Future versions of the J2EE platform

will likely define greater integration of XML for communicating data between tiers,

thus further enhancing portability of J2EE applications.

CORBA Technology Standards for the J2EE

Platform

The Object Management Group (OMG) in conjunction with Sun has produced the

RMI-IIOP specification. This standard defines how the CORBA IIOP protocol is used

by the Java Remote Method Invocation facility.

The EJB specification uses the application mapping for RMI-IIOP as its standard for

calling EJBs. The J2EE platform strongly supports the use of RMI-IIOP. Sun is

working closely with the other OMG members on future directions involving EJB

technology and CORBA.
1-10 Simplified Guide to J2EE • Sept, 1999

J2EE Compatibility Test Suite

J2EE platform vendors will need to verify that their implementations conform to the

J2EE platform specification. Toward that end, Sun Microsystems, Inc. will license to

platform vendors the J2EE Compatibility Test Suite (CTS).

Licensees will deploy, configure, and run this test suite (via its GUI framework) on

their platform implementations. The suite will include tests for ensuring that the

J2EE APIs are implemented. The tests will verify that the J2EE component

technologies are available and working together properly. It will also include a set of

fully functional J2EE applications to verify that all platforms are capable of

deploying and running them consistently.

J2EE Reference Implementation

The J2EE reference implementation fulfills several roles.

Its primary role is as an operational definition of the J2EE platform. In this role, it is

used by vendors as the J2EE platform’s “gold standard” to determine what their

implementation must do under a particular set of application circumstances. It is

also used by developers to verify the portability of an application. Most importantly,

it is used as the standard platform for running the J2EE Compatibility Test Suite.

A secondary, but more visible, role for the reference implementation is as a freely

available platform for popularizing Java 2 platform, Enterprise Edition. Although it

is not a commercial product and its licensing terms will prohibit its commercial use,

it will be freely available in binary form for demonstrations, prototyping and

academic research.

The reference implementation will also be made available in source form.
Introduction 1-11

1-12 Simplified Guide to J2EE • Sept, 1999

J2EE Application Example:
A Web Store

The Java™ 2 Platform, Enterprise Edition can be used to build a wide range of

services. This section describes how the J2EE platform was used to create a web

store—CHEAPBOOKS.COM. As the example shows, the middle-tier of the J2EE

platform provides the complete foundation upon which this service’s presentation,

business logic, and EIS access is built. FIGURE 1 illustrates the J2EE components that

were used to create the Web store sample application.

The most significant thing about this web store example is what is not illustrated.

The normal complexity you would expect to see is not here because it did not have

to be built by the developers of the store. Instead, the developers used the J2EE

platform’s built-in support for middle-tier development.

The J2EE application programming model guided the developers of the web store

through the development process. The model simplified their work by naturally

separating the components used for presenting the store (JSPs) from those that

implement the store’s business processes (EJBs). In both areas, the J2EE application

model allowed the developers to dedicate their time to the application details

specific to the business of managing a bookstore, while behind the scenes the J2EE

platform handled the application’s complex system and resource demands.

JavaServer Pages simplified the task of customizing the store’s presentation to

individual customers. JSP pages provide an easy-to-use combination of HTML and

Java that efficiently generates a customer-specific view of the store. Since JSP

technology also provides a built-in facility for calling Enterprise JavaBeans™

components, the store’s presentation components could access its business functions

simply and directly.

Enterprise JavaBeans components significantly reduced the effort needed to build

the store’s business functions. Instead of having to write complex state management

code, the developer built the “shopping cart” enterprise bean and let the J2EE

platform automatically manage its state. Instead of spending time designing and

building a database connection manager, the developer built the “catalog” enterprise
2-1

bean and let the J2EE platform handle connection management. Since EJB

technology makes it easy to combine multiple actions into a single transaction,

order-processing problems caused by partial failure of a purchase are avoided. This

reduces the need for customer service involvement and results in greater customer

satisfaction.

Since the J2EE platform provides back-office access APIs that are integrated as a

standard part of the platform, the store’s business functions were developed and

integrated with the company’s existing systems, all within one consistent

environment.

The productivity of the Java™ platform plus the sophisticated middle-tier facilities

provided by the J2EE platform significantly reduced the time to market: the elapsed

time required to get the online store operational. Because J2EE is an open standard,

the store developers were able to select the vendor and computing hardware that

best fit their needs for functionality, performance, and reliability. In addition, the

wide selection of development and content authoring tools that can be used with

J2EE gave the developers the flexibility they needed to build a highly competitive

store.

The internet economy dramatically reduces the cost of switching from one vendor to

another for goods and services. E-commerce vendors who lock themselves into

single-platform solutions today may be restricting their ability to respond quickly to

changes in the market tomorrow. By applying the J2EE platform to their e-commerce

needs, organizations give themselves additional flexibility for maintaining and

building market share.

The middle-tier architecture needed to implement the web store is very similar to

the architecture needed to implement a wide range of services that directly reach the

important wide range of customers, employees, partners and suppliers that an

enterprise in today’s world must directly and efficiently interact with. Typical

examples of these services are customer management, supply chain management,

and employee expense accounting.

FIGURE 1 illustrates how the CHEAPBOOKS.COM web store was implemented as a

J2EE application.
2-2 Simplified Guide to J2EE • Sept, 1999

FIGURE 1 CHEAPBOOKS.COM, A Web Store Example

JPE Middle-Tier

Browse

Membership

JSPs EJBs

Purchase

Customize

Catalog

CUSTOMER

Mail Server

JavaMail

ISP

Order
Acknowledgment

Shopping
Cart

Acknowledge
Order

Book
Order

H
T
T
P

Select

J
D
B
C

H
T
T
P
S

Secure

D
atabase
J2EE Application Example: A Web Store 2-3

2-4 Simplified Guide to J2EE • Sept, 1999

	Simplified Guide to the Java™ 2 Platform, Enterprise Edition
	Contents
	Introduction

	What Is the Java™ 2 Platform, Enterprise Edition?
	J2EE Application Model
	FIGURE�1 Two-Tier vs. Multi-Tier Application Models
	Java Technology Foundation
	Security
	The Middle Tier
	FIGURE�2 EJB Components Implement Business Logic in the Middle Tier

	The Client Tier
	HTML Page Based Clients
	FIGURE�3 Presenting Services Directly to a Browser

	HTTP Content Based Clients
	FIGURE�4 Providing JavaBeans components to a Browser

	Intranet Clients
	Other Client Types

	The Enterprise Information Systems
	J2EE Declarations

	J2EE Platform
	J2EE Application Assembly and Deployment
	FIGURE�5 Deploying J2EE Applications

	Java Technology Standards for the J2EE Platform
	IETF Standards for the J2EE Platform
	CORBA Technology Standards for the J2EE Platform

	J2EE Compatibility Test Suite
	J2EE Reference Implementation
	J2EE Application Example: A Web Store
	FIGURE�1 CHEAPBOOKS.COM, A Web Store Example

