
Java certification success, Part 4: SCEA
Skill Level: Intermediate

Sivasundaram Umapathy (authors@whizlabs.com)
Programmer

20 May 2005

This tutorial aims to help SCEA certification aspirants clear the first part of the SCEA
certification exam, a knowledge-based, multiple-choice exam. The tutorial introduces
the reader to the concepts and then builds upon them to cover other topics such as
common architectures, legacy connectivity, Enterprise JavaBeans technology, the
Enterprise JavaBeans container model, protocols, applicability of J2EE technology,
design patterns, messaging, internationalization, and security. Readers'
understanding is then reinforced through examples and practice questions and
guides them to various useful resources for SCEA certification exam preparation.

Section 1. Getting started

Preparing for SCEA

The Sun Certified Enterprise Architect (SCEA) exam is for professionals who design
and build enterprise solutions using Java™ 2 Platform, Enterprise Edition (J2EE)
technology in a robust, scalable, secure, and flexible way. This exam is the highest
title in the certification path for the J2EE track. Although this exam logically follows
the Programmer and Developer exams, there are no prerequisites for taking this
exam. Hands-on experience designing J2EE solutions will be helpful in clearing this
exam at the first go. This three-part exam comprises a knowledge-based,
multiple-choice exam, an assignment, and an essay exam.

What's in this tutorial?

This tutorial focuses on the Part 1 knowledge-based, multiple-choice exam. This
exam differs from the Programmer and Developer exams because it tests a wide
range of topics that could be aptly summarized by the phrase "mile wide and inch
deep."

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 102

mailto:authors@whizlabs.com
http://www.ibm.com/legal/copytrade.shtml


This tutorial covers the following main sections.

• Section 1: Concepts

• Section 2: Common architectures

• Section 3: Legacy connectivity

• Section 4: Enterprise JavaBeans

• Section 5: Enterprise JavaBeans container model

• Section 6: Protocols

• Section 7: Applicability of J2EE

• Section 8: Design patterns

• Section 9: Messaging

• Section 10: Internationalization

• Section 11: Security

Although the exam does not focus on a particular J2EE version, the questions relate
to J2EE version 1.2. So, you might not find the latest concepts, such as
message-driven beans, Web services, and other features of later J2EE versions.

Each section of this tutorial deals with a single objective. Wherever required,
appropriate diagrams and examples have been provided to ease understanding of
the subjects. This tutorial cannot and should not be used as the only source of
reading as it does not elaborate much on each topic; rather, it helps you to prepare
for the exam by concentrating on the key points tested in the exam.

Each chapter ends with a summary and mock questions that represent the actual
exam pattern. These are not real questions from the exam, but they help you to
understand the extent to which the objectives are tested in the exam. Explanations
about the correct and incorrect choices are included to give you a better
understanding of the concepts.

Section 2. Concepts

Introduction

Software modeling involves designing software applications before coding. Creating
a model helps you to understand the system better -- before it is developed. Unified
Modeling Language (UML) is one such modeling language you can use to specify,

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 2 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


visualize, and document models of software systems, including their structure and
design, in a way that meets all of your requirements. It is important to remember that
UML is not a process methodology; it's just a modeling language. In practice, UML is
often used with a process methodology. The current exam is based on UML version
1.x.

UML has three major elements: building blocks, relationship rules, and common
mechanisms. Let's examine them one by one.

UML: Building blocks

UML building blocks can be divided into three categories:

• Elements

• Relationships

• Diagrams

Elements are abstractions; relationships tie these elements together; and diagrams
group the collection of related elements by means of relationships.

UML: Elements

There are four types of elements:

• Structural

• Behavioral

• Grouping

• Annotational

Structural

These elements are similar to the nouns of a language.

Name Definition Notation

Class Set of objects that share the
same attributes, operations,
relationships, and semantics. It
is represented by a rectangle
containing three areas: name of
the class, attributes (properties)
of the class, and the operations
(methods) of the class.

Interface A collection of operations that
specify a service of a class or
component. This is also

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 102

http://www.ibm.com/legal/copytrade.shtml


represented by a rectangle with
three areas representing the
name of the interface, attributes,
and the operations of the
interface. This has an addition
of the word "interface" above
the interface name.

Collaboration Defines an interaction and is a
combination of roles and other
elements that work together to
provide some cooperative
behavior bigger than the sum of
all the elements. This is
represented by a dashed-line
ellipse.

Use case A description of a set of actions
the system performs to yield an
observable result of value to an
actor. This is represented by an
ellipse with the use case name
inside the ellipse.

Active class A class whose instances are
active objects. They own one or
more processes or threads to
initiate control activity.

Component A physical and replaceable part
of the system that conforms to
and provides the realization of a
set of interfaces.

Node A physical element that exists at
runtime and represents a
computational resource having
some memory and processing
capability.

Behavioral

Defines the dynamic part of the UML elements.

Name Definition Notation

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 4 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Interaction Comprises a set of messages
exchanged among a set of
objects within a particular
context to accomplish a specific
purpose.

Statemachine Specifies the sequence of states
an object or interaction goes
through during its lifetime in
response to events, together
with its response to those
events.

Grouping

Name Definition Notation

Package A general-purpose mechanism
for organizing elements into
groups.

Annotational

Name Definition Notation

Note A symbol for rendering
comments you want attached to
other elements or collections of
elements.

UML: Relationships

Relationships

There are four types of UML relationships:

• Dependency

• Association

• Generalization

• Realization

Dependency

A dependency is a semantic relationship between two elements in which a change in
one element can affect the semantics of another element. The arrow indicates the

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 102

http://www.ibm.com/legal/copytrade.shtml


direction of dependency. In the following diagram, MyClass1 has a dependency
relationship with MyClass2. The change in MyClass2 affects MyClass1.

Association

An association is a structural relationship that describes a set of connections
between objects. An association may have a multiplicity at each end that represents
the number of elements the element at the other end of the association has with the
end that specifies the multiplicity.

Multiplicity Meaning

1 One and only one

0..* or * Zero, one, or many

1..* One or many

a..b Between a and b

a,b a or b

An association may be directed or undirected . If it is
undirected, then it has not been decided if the association is directed, or the
association is bi-directional. In the following diagram, the association is undirected.

There are two special types of associations:

• Aggregation

• Composition

Aggregation represents the relationship between the whole and the part. One end
of the association is designated the aggregate while the other end is unmarked. In
this diagram, Myclass2 is a part of Myclass1.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 6 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Composition also represents the whole and the part relationship, but it is a stronger
form of aggregation. There is an additional constraint that an object might be part of
only one composite and that the composite object has the responsibility for the
lifetime of all its parts -- that is, for their creation and destruction. In the following
diagram, MyClass1 cannot exist without MyClass2.

Generalization

Generalization is a parent-child relationship. MyClass2 is the super class, and
MyClass1 is the subclass. With Java programming language, you implement
generalization by subclassing using the extends keyword.

Realization

Realization is the relationship between the interface and the implemented class. In
Java language, you implement realization by implementing an interface using the
implements keyword.

Common mechanisms

Let's now discuss the following common mechanisms:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 102

http://www.ibm.com/legal/copytrade.shtml


• Specifications

• Adornments

• Common divisions

• Extensibility mechanisms

Specifications

A specification is textual statements representing the syntax and semantics of the
building blocks. A class can specify all, or only part of, the attributes, operations, and
behaviors.

Adornments

You use adornments to represent additional state, for example, whether a class is
abstract, or the visibility of attributes or operations (+public, #protected, -private).

Common divisions

If the element name is underlined in the class diagram, it an instance of a class
(class is an instance of class). :class represents an anonymous instance of class,
and named:class is a named instance of class.

Extensibility mechanisms

Extensibility mechanisms allow you to customize and expand UML. Stereotypes,
tagged values, and constraints are some of the mechanisms.

UML: Diagrams

We will discuss the following UML diagrams:

• Use-case diagram

• Class diagram

• Package diagram

• Interaction diagram

• Statechart diagram

• Activity diagram

• Component diagram

• Deployment diagram

Use-case diagram

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 8 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


A diagram shows the relationships among actors and use cases within a system. It
helps the system analyst to elaborate the requirements from an end-user view. It is
drawn as a graph of actors, a set of use cases enclosed by a system boundary (a
rectangle), associations between the actors and the use cases, and generalization
among the actors.

A use case is a summary of scenarios for a single task or goal. An actor is a person
or a system that initiates the events involved in that task. In the following use-case
diagram, there are three actors: customer, admin, and the credit card service. The
ellipses represent the use case (business process), and the actors access the
different use cases. The connection between actor and use case is called
communication. The "charge the credit card" use case is factored out as a separate
use case and modeled using an include relationship. This means that the other use
cases that need to charge the customer can reuse the common factored out "charge
the credit card" use case. The system boundary separates the system from the
actors and is represented by the ECommerce site rectangle.

Other possible relationships in a use-case diagram are the extend relationship,
which indicates that one use case is a variation of another, and generalization that is
used to represent inheritance among use cases.

Class diagram

A class diagram describes the static structure of the symbols in the system. It is a
graphic presentation of the static view that shows a collection of declarative (static)
model elements, such as classes, types, and their contents and relationships.
Classes are arranged in hierarchies sharing common structure and behavior, and

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 102

http://www.ibm.com/legal/copytrade.shtml


are associated with other classes. A class diagram might contain certain behavioral
elements, such as operations, but their dynamics are usually expressed in other
diagrams, such as statechart diagrams and collaboration diagrams.

A single class diagram might not be enough to show the entire static view. So,
generally you might find multiple class diagrams based on logical boundaries such
as packages.

In the following class diagram, the static structure is defined around the main entity
Customer that is connected to various other classes, such as Address, Order, and
Payment interface. A customer can have a collection of Addresses (shipping
address, billing address, alternate shipping address, and so on) modeled by the
aggregation. The customer also has an association relation with the Payment
interface and the Order class. The Payment interface can either be a CreditCard or a
DebitCard, which are two specific realization models of the Payment interface. Each
order has many OrderItems attached to it. Because the OrderItem cannot live
without the Order, the relationship is modeled as a composition. The
PrivilegedCustomer is a special form of Customer who gets loyalty points for the
purchases made and is extended from the Customer using a generalization relation.
The navigability shows the direction in which an association can be traversed. The
multiplicity indicates the possible instances.

UML: Diagrams, continued

Package diagram

A package diagram shows the organization of systems in groups and can be
considered as a special kind of class diagram. The classes are grouped into
packages and represented by rectangles with a tab on the extreme right. The dotted

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 10 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


arrows represent the dependencies. In the following example, there are three
packages: Customer, Order, and ShoppingUI. Changes in the Customer package's
classes will affect the Order package's classes, and they are therefore represented
by a dependency relation.

Interaction diagram

As the name implies, the interaction diagram emphasizes object interactions,
consisting of a set of objects and their relationships, along with the messages
exchanged between them. Both sequence and collaboration diagrams are forms of
interaction diagrams. Although they use the same underlying information, each of
them represents a specific view. It is worth noting that these diagrams are
isomorphic, meaning that from one diagram you can derive the other.

A sequence diagram shows an interaction arranged in time-order sequence. So you
can see the objects by their lifelines and the messages they exchange, arranged in
time sequence.

In the following sequence, the Administrator initiates the sequence by sending the
createAccount(name,address) message to the AccountManager class to
create a new customer account. The AccountManager now creates a new Account
class and sets the various properties of the class by sending messages, such as
setName(name) and setAddress(address). Finally, the newly created Account
object is returned.

The messages are represented by arrows, and the vertical line is the lifeline of the
object, indicating when the object is created and how long it exists.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 102

http://www.ibm.com/legal/copytrade.shtml


A collaboration diagram shows an interaction arranged around the objects that
perform the operations. Hence, it focuses more on structural organization of the
objects that send and receive messages.

In the following collaboration diagram, the rectangles represent the objects, and
objects are labeled using the object name followed by the class name separated by
a colon (:). The messages have a sequence number, and the initiating first message
starts with the number 1. The messages, such as create and setName(), have
the same decimal prefix to indicate that they are sent as part of the same call; their
increasing suffixes indicate the order in which they occur.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 12 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


UML: Diagrams, continued

Statechart diagram

A statechart diagram shows a state machine consisting of states, transitions, events,
and activities. It provides a detailed picture of how a specific symbol changes states.
A state refers to the value associated with a specific attribute of an object and to any
actions or side effects that occur when the attribute's value changes.

In the following example, there are three states: Login, Getting product name, and
Catalog page, represented by rounded rectangles. Arrows represent the transitions.
The initial state represented by the black circle is a dummy state to start the action.
The events or conditions that trigger the transaction are written as labels on the
arrows. After the Login state, the application moves to the Getting product name
state. If the product is found (represented by the [item found] condition), the
application transitions to the Catalog page. On the other hand, if the product is not
found, the self-transition to the same state happens. The final state is represented
by a concentric white/black circle.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 102

http://www.ibm.com/legal/copytrade.shtml


Activity diagram

An activity diagram is a special case of a statechart in which all or most of the states
are activity states or action states and in which all or most of the transitions are
triggered by completion of activity in the source states. You use it to show the flow
from activity to activity within a system thereby neatly showing the workflow. A
statechart diagram focuses attention on an object undergoing a process, whereas an
activity diagram focuses on the flow of activities involved in a single process. It is an
important diagram because it emphasizes the flow of control among objects. You
can consider activity diagrams advanced versions of flow charts.

In the following example, the process begins with the dummy state marked by the
black circle. The rounded rectangles represent the activities, and the arrows
represent the flow between activities. After the activity Place order, where all the
required details, such as shipping address and credit card details for completing the
order are taken, the transition forks into two parallel activities, Prepare for shipping
and Process billing. Finally, both parallel activities are joined into a single transition
and end at the final dummy state represented by a concentric white/black circle. The
fork and the join are represented by a solid bar.

When a transition branches out, the Guard expressions (such as [isUrgent=true] and
[isUrgent=false]) label the transitions. Hollow diamonds indicate a branch into
multiple transitions and the merge into a single transition.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 14 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


UML: Diagrams, continued

Component diagram

A component diagram shows the organizations and dependencies among a set of
components. They address the static implementation view of a system by showing
the dependencies among software components including source code components,
binary code components, and executable components. A component diagram has
only a descriptor form, not an instance form.

In the following example, a component is illustrated as a rectangle with two
rectangles protruding from the left-hand side. The dashed arrow lines show the
dependency between the components. A lollipop symbol represents the IProduct
interface.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 102

http://www.ibm.com/legal/copytrade.shtml


Deployment diagram

A deployment diagram shows the configuration of runtime processing nodes and the
components that live on these nodes, and addresses the static deployment view of
an architecture. Components that do not exist as runtime entities do not appear on
this diagram; component diagrams represent them. The main difference between a
deployment diagram and a component diagram is that the former shows the
instances whereas the latter shows the definition of component types.

A cube represents the nodes, and an association link shows the physical
connections between the nodes. In the following example, the node DB2Server
represents the database node in which the OrderDB database component exists.
Data access happens via the IOrder interface indicated by a lollipop symbol. The
Web container component has a dependency with the IOrder, depicted by the
dashed arrow line.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 16 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Encapsulation, inheritance, and use of interface

Encapsulation

Encapsulation is the localization of knowledge within a module. Because objects
encapsulate data and implementation, the user of an object can view the object as a
black box that provides services. Instance variables and methods can be added,
deleted, or changed, but if the services provided by the object remain the same,
code that uses the object can continue to use it without being rewritten.

Encapsulation helps in:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 102

http://www.ibm.com/legal/copytrade.shtml


• Distinguishing between the specification and the implementation of an
operation.

• Modularity, which is necessary to structure complex applications designed
and implemented by a team of programmers. It is also necessary as a
tool for protection and authorization.

Inheritance

Inheritance is a process by which one object can acquire the properties of another
object. There are two kinds of inheritance: class inheritance and interface
inheritance.

Class inheritance creates a tight coupling between base and derived classes and is
therefore often considered to break encapsulation. Also, because inheritance is a
compile-time behavior, the implementation cannot be changed during runtime.

Based on this, the Gang of Four has defined two design principles. They are:

• Program to an interface, not an implementation.
Clients only need to know the interface/abstract class that defines the
interface. Hence, implementation dependencies between subsystems are
avoided as the clients remain unaware of the classes that implement the
interface.

• Favor object composition over class inheritance.
As class inheritance exposes the parent classes, it can be replaced by
object composition where a new functionality is obtained by assembling or
composing objects to get more complex functionality. Composition
respects the object's interfaces and consequently does not break
encapsulation.

Summary

UML is a modeling language for specifying, modeling, and documenting
object-oriented and component-based system architectures. Structural elements,
behavioral elements, grouping elements, and annotational elements are the four
basic UML building blocks for creating the models. You use these elements to draw
the various UML diagrams that address the static and dynamic views of the system.
Each diagram offers a unique perspective not available in other diagrams. While
modeling a system, we often use a combination of different diagrams to address
various concerns. It is important to remember that UML does not specify any
process methodology; rather, it provides a modeling environment. You must utilize
proven design principles like encapsulation and interfaces to create a robust and
flexible system. Whenever possible, use interfaces to isolate clients from
implementation, and use object composition instead of class inheritance.

For the exam, you must understand the different types of diagrams, so that given a

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 18 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


diagram, you can identify and interpret it.

Test yourself

Question 1:

Which two types of diagrams from the following can be derived from each other?

Choices:

• A. Sequence diagram

• B. Activity diagram

• C. Collaboration diagram

• D. Statechart diagram

Correct choice:

A and C

Explanation:

Choices A and C are the correct answers.

Sequence diagrams and collaboration diagrams are isomorphic (that is, one type of
diagram can be converted into the other). Therefore, choices A and C are correct.

Activity and statechart diagrams do not have such relationships, so they are
incorrect.

Question 2:

What is the relationship depicted by the following two classes?

Choices:

• A. Association

• B. Generalization

• C. Composition

• D. Strong dependency

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 102

http://www.ibm.com/legal/copytrade.shtml


• E. Aggregation

Correct choice:

C

Explanation:

C is the correct answer.

Composition, a stronger form of aggregation, is represented by a solid-filled
diamond. Hence, choice C is correct.

Choice A is incorrect because association is simply represented by a line.

Choice B is incorrect because generalization is an inheritance relationship
represented by a line with an open arrow at the end.

Choice D is incorrect because there is no such UML terminology as strong
dependency.

Choice E is incorrect because aggregation, a special form of association that
indicates a whole-part relationship, is represented by a line with an open diamond on
the side of the whole part.

Section 3. Common architectures

Introduction

Architecture is a set of structuring principles that enables a system to consist of a set
of simpler systems, each with its own local context independent of, but not
inconsistent with, the context of the larger system as a whole. The architecture
should not only satisfy the functional requirements but also the nonfunctional
requirements. This does not happen often, however, because most of the efforts are
targeted toward implementing the functionality, and other important quality attributes
such as scalability, extensibility, and flexibility are conveniently forgotten. The
architect's role should be to ensure that the architecture takes into account both
functional and nonfunctional requirements. In this section, we discuss various quality
attributes and how you can apply them to a tiered architecture.

Architectural characteristics (quality attributes)

As we've already mentioned, a system architecture should address both functional
or business requirements and nonfunctional or service-level requirements. During

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 20 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


the initial phases, an architect has to define the quality of service measurement for
each of the service-level requirements. Normally, there is a trade-off between these
requirements. For example, to achieve better extensibility, an architect might
introduce a modular architecture with many objects, thereby increasing the memory
requirements, which impacts the performance. The service-level requirements of
prime importance are:

• Scalability

• Maintainability

• Reliability

• Availability

• Extensibility

• Performance

• Manageability

• Security

Scalability

Scalability is the ability to accommodate more users with the required quality of
service as the transactional load increases. A scalable system responds within
acceptable limits even when there is an increased load. To scale a system that has
met capacity, you can add hardware vertically or horizontally, thus leading to the
following two types of scaling:

• Vertical scaling
Vertical scaling is achieved by adding capacity (memory, CPUs, etc.) to
existing servers. This requires only a few or no changes to the system's
architecture. This type of scaling helps in increasing the capacity to serve
more clients and requires less management of the resources. This type of
scaling is comparatively easier and cheaper than horizontal scaling.

• Horizontal scaling
Horizontal scaling is achieved by adding servers to the system. This
increases the server's reliability, availability, and flexibility. Depending on
the load-balancing algorithm, it sometimes also increases the
performance. But horizontal scaling increases the complexity of the
system architecture resulting in a decrease in manageability.
J2EE architecture supports horizontal and vertical scaling. In horizontal
scaling, the server can manage more components. In vertical scaling, with
the help of load balancing and clustering, more clients can be served.

Maintainability

Maintainability is the ability to correct flaws in the existing functionality without
impacting any other components. To enhance the maintainability, the system design

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 102

http://www.ibm.com/legal/copytrade.shtml


should be modular, and proper documents should be present for the system. This
requirement cannot be measured during the deployment of the system.

Reliability

Reliability is the ability to ensure the integrity and consistency of the application and
all of its transactions. You can increase reliability through the use of horizontal
scalability, such as by adding more servers. The increase in reliability also increases
the availability.

Architectural characteristics (quality attributes), continued

Availability

Availability is about assuring that services are available to the required number of
users for the required proportion of time. The term 24x7 refers to the total
availability. You can achieve total availability through a fault-tolerance mechanism
such as replication. There are two types of replication, active and passive.

Extensibility

Extensibility is the ability to modify or add functionality without impacting the existing
functionality. The key to an extensible design is to create an effective object-oriented
(OO) design with low coupling, interfaces, and encapsulation. J2EE supports
extensibility because it is component-based and allows you to separate an
application's roles.

Performance

Performance is usually measured in throughput. Throughput is a system's response
time. You can also determine performance using the number of transactions per unit
time. By using load balancing and load distribution, you can increase the system's
performance.

DNS Round Robin is a load-distribution algorithm, in which the first request is served
by the first server and the subsequent requests are served by the subsequent
servers. If there are five servers, then the sixth request is served by the first server.
In load balancing, the request is served by the server with the lesser load.

You can also increase performance with efficient programming. For example,
minimizing the number of network calls in the distributed application results in
performance gains. Resource pooling and caching are also other ways of increasing
performance.

Manageability

Manageability refers to the ability to monitor the system resources to ensure
continued health of the system. A manageable system lets you dynamically
configure the system without actually changing it.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 22 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Distributed applications are more complex to manage compared to monolithic
applications, but distributed applications are more scalable, reliable, and available.
So, it's a trade-off between manageability and other service-level requirements.

Security

Security ensures that information is not accessed, modified, or disclosed except in
accordance with the security policy. A highly secure system is more costly and also
harder to define and develop. The easier way to secure an application is by creating
an architecture with separate functional components and applying security zones so
that attacks are localized and impact is minimized, if they occur.

Security attacks generally try to compromise confidentiality and integrity of the
system. Sometimes, they also take the form of denial of service (DoS) attacks that
bring down a system by flooding it with messages. You can address security by
using technologies such as firewalls, demilitarized zone (DMZ), data encryption, and
digital certificates and methodologies such as good security policies and procedures.

Architectural tiers

The work done by any application program can be divided into four general
functions:

• Data storage

• Data access logic

• Application logic

• Presentation logic

These functions can reside in a single tier or can be distributed across many tiers.
Following are the different tiered architectures.

One-tier architecture or monolithic architecture

These applications are standalone applications that store data, apply business logic,
and display results.

Two-tier architecture

This is a client/server architecture in which the user interface runs on the client, and
the database is stored on the server. The actual application logic can run on either
the client or the server. The drawback of this architecture is heavy load on the
network due to heavy interaction between the client and server and also lack in
modularity, which results in less flexibility.

N-tier architecture

Well-designed, distributed applications utilize n-tier architectures whereby each tier

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 102

http://www.ibm.com/legal/copytrade.shtml


is an autonomous unit you can develop and maintain separately, as technologies
and business requirements change.

J2EE-based architectures consist of:

• Client tier
The end user interacts with this tier. Clients can be thin clients, as in the
case of browser-based applications, or fat clients, as in the case of client
Java applications.

• Web tier
This tier decouples the client tier from the business tier. Java servlets and
Java ServerPages (JSPs) reside in this tier. Servlets act as controllers;
they translate incoming requests and dispatch them to components that
can invoke the necessary business events in the business tier. JSP pages
combine static templates with dynamic data to create dynamic output the
client tier uses for presentation to the user.

• Business/application logic tier
This tier is generally implemented using Enterprise JavaBeans (EJBs)
that act as business process objects and business domain objects. EJB
containers provide various services, such as object distribution,
persistence, transaction, resource management, security, and so on.

• Enterprise information system (EIS) integration tier
The EIS integration tier interfaces between the business (and sometimes
Web tier) objects and enterprise information systems. For example, data
access objects (DAO) decouple enterprise beans (typically session beans
or BMP entity beans) with enterprise data.

• Enterprise information system (EIS) tier
This tier represents all the enterprise data and can be in many forms
including relational databases, XML databases, and ERP systems.
Well-architected and designed n-tier systems help in achieving all the
nonfunctional service-level requirements of the system. The following
table compares the various tiers in terms of the service-level
requirements.

Service-level
requirement

One tier Two tier N tier

Scalability No Not exactly Highly
scalable

Maintainability Difficult to
maintain.
Rolling out
changes to
clients is
also
difficult.

Difficult as
presentation
and
business
concerns
are
intermixed.

Easier to
maintain
as
application
is layered.
Also the
clients do
not need
to be
updated

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 24 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


about new
changes.

Reliability Single
point of
failure.

Database
is still a
single
point of
failure.

Can be
designed
to have
fault
tolerance
using
fail-over
and
redundant
mechanism.

Availability Single
point of
failure.

Database
is still a
single
point of
failure.

Fault-tolerant
mechanisms
ensure
24x7
availability.

Extensibility Difficult. Difficult as
presentation
and
business
concerns
are
intermixed.

Loosely
coupled
and hence
better to
extend.

Performance Good but
might not
perform
well under
heavy
load.

Good
performance
only for
small
applications.

Good
performance.

Manageability Easy to
manage.

Not so
easy to
manage.

Difficult to
manage.

Security Least
robust as
there is a
single
point of
compromise.

Better than
one tier.

Best
security as
security
zones can
be built
around
each tier;
difficult to
implement,
however.

Summary

In this section, we discussed the basic definition of architecture and the service-level
requirements. You learned that data storage, data access logic, application logic,
and presentation logic are the four major functions for a system. Depending on the
location where these concerns are addressed, you can classify the architecture as a
one-tier, two-tier, or n-tier architecture. You also learned how the service-level

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 102

http://www.ibm.com/legal/copytrade.shtml


requirements relate to the number of tiers. For the exam, remember the definitions of
various quality attributes and how they influence each other. Given a scenario, you
should be able to point out the system's strengths and weaknesses.

Test yourself

Question 1:

Which of the following service-level requirements suffer in a one-tier system?

Choices:

• A. Manageability

• B. Extensibility

• C. Scalability

• D. Security

• E. Maintainability

Correct Choice:

B, C, and E

Explanation:

Choices B, C, and E are the correct answers.

One-tier systems are difficult to maintain because of the tight coupling between
different concerns, such as presentation, business logic, and persistence. Changes
to any one of them will affect the others. Because of this tight coupling, they are also
not extensible. No tier separations exist, so they can only be vertically scaled if you
add more resources to the system. However, this does not ensure a great
performance under heavy load because horizontal scaling is not possible. Hence
choices B, C, and E are correct.

One-tier systems are easier to manage because you don't have to manage as many
components. Security might not be robust because there is a single point of failure,
but it is still easier to implement in a one-tier system. Hence choices A and D are
incorrect.

Section 4. Legacy connectivity

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 26 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Introduction

A legacy system is a system that is used today but is based on an outdated system
architecture. Monolithic mainframe-based systems, which are single-tiered, and
client/server two-tier systems generally fall under this category. These applications
cannot be scrapped completely due to the time and cost involved, and they must
therefore coexist in a heterogeneous environment. Legacy connectivity focuses on
integrating new e-business applications with the existing legacy systems, thereby
extending the reach of legacy systems beyond its original goal. This section deals
with how Java components can interact with such legacy systems.

Data-level integration

Data integration is the process of sharing or merging data from two or more distinct
software applications to create a more highly functional enterprise application.
Traditional business applications are highly data oriented -- they rely on persistent
data structures to model business entities and processes. When this is the case, the
logical approach is to integrate the applications by sharing or merging data.

Sharing or merging data is probably the easiest method for integration with a legacy
application. Because the integrity checks present in user applications are bypassed,
data corruption is possible. Hence, it is not suitable for applications where data
integrity is critical. This method is also not suitable when complex data structures are
involved or not much persistent data exists.

Java Database Connectivity (JDBC)

JDBC technology is an API that provides cross-DBMS connectivity to a wide range
of SQL databases and access to other tabular data sources, such as spreadsheets
or flat files. With a JDBC technology-enabled driver, you can connect all corporate
data even in a heterogeneous environment.

Application-/business-/presentation-level integration

Application interface integration enables a higher level form of integration, where an
application uses some of the functionality residing in other applications. This is
achieved by using the APIs the applications expose. Typically, middleware such as
message-oriented middleware (MOM), remote procedure calls (RPC), or object
request brokers (ORB), is involved.

Java Message Service

The Java Message Service (JMS) is a messaging standard that allows application
components to create, send, receive, and read messages. It enables distributed
communication among J2EE components and legacy systems that can provide
loosely coupled, reliable, and asynchronous messaging services.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 102

http://www.ibm.com/legal/copytrade.shtml


Java IDL

Java Interface Definition Language (IDL) adds Common Object Request Broker
Architecture (CORBA) capability to the Java platform, providing standards-based
interoperability and connectivity. Java IDL enables distributed, Web-enabled Java
applications to transparently invoke operations on remote network services using the
industry standard IDL and Internet Inter-ORB Protocol (IIOP) defined by the Object
Management Group. Runtime components include Java ORB for distributed
computing using IIOP communication.

Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is a wire protocol similar to CORBA's IIOP
for communicating between applications running on different operating systems with
different technologies and programming languages. It is an XML-based protocol that
helps in calling an application, or even an individual object or method within an
application, across the Internet via HTTP. Because HTTP is widely used and usually
allowed by any firewall, there is a better chance for SOAP calls to be invoked
through the firewall, which is not the case for IIOP and Remote Method Invocation
(RMI).

Java Connector Architecture

The J2EE Connector Architecture (JCA) provides a Java solution to the problem of
connectivity between the many existing application servers and EISs. By using the
JCA, EIS vendors no longer need to customize their products for each application
server. Application server vendors that conform to the JCA do not need to add
custom code whenever they want to add connectivity to a new EIS.

Java Native Interface

The Java Native Interface (JNI) allows Java code that runs within a Java virtual
machine (JVM) to operate with applications and libraries written in other languages,
such as C, C++, and assembly. For example, a Java wrapper can be created for a
legacy C++ application using JNI.

This method is complex and suitable only when you have access to the legacy
system's source code.

Object mapping tools

You use object mapping tools to directly access the legacy system business logic
and database tiers. Instead of using the existing legacy interface, underlying tiers
are directly accessed. You use these tools to create proxy objects that access
legacy system functions and make them available in an object-oriented manner.
These tools are usually more effective than screen scrapers because they are not
dependent on the format generated by the existing legacy interface.

Off-board server

An off-board server is a server that executes as a proxy for a legacy system. It

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 28 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


communicates with the legacy system using the custom protocols supported by the
legacy system. It communicates with external applications using industry-standard
protocols.

Screen scraper (terminal emulator)

A screen scraper component emulates a mainframe terminal. The screen scraper
logs on to the mainframe like a normal user, sends requests to the mainframe, and
then intercepts the character-based response of the mainframe. Therefore, it is
useful for both CUI and GUI applications. The problem with a screen scraper is that
even if there is a slight change in the application's behavior or the user interface,
there is always the possibility that the screen scraper will stop working.

The screen scraper method is suitable when the legacy system does not expose any
other programming interface and the source code is also not available.

B2B integration

In simple words, B2B commerce can be defined as business to business, or
business conducted over the Internet. It is most commonly associated with buying
and selling information, products, and services via the Internet or through the use of
private networks shared among business partners. B2B can also be defined as the
exchange of structured messages with other business partners over private
networks or the Internet to create and transform business relationships. The exam
asks a few questions about B2B architecture models, and they are:

• Spoke

• Exchange

• Hub

Spoke

A business is connected to the existing business partner's extranet as a spoke. A
spoke is cheap and quick to implement. You just need a Web browser to read the
data. The disadvantage is that the data is seen one partner at a time. So, it is difficult
to assemble the big picture from other spokes.

Exchange

A B2B exchange solves many of the problems associated with relying on trading
partner extranets. There is a central third-party marketplace that handles the
infrastructure, and the partners supply and receive the required data. Then partners
access the data through Web browsers. Although an exchange might represent a
large number of trading partners, it is possible it might not represent all the
company's trading partners. Also, the data may not be customized and can be
limited.

Hub

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 102

http://www.ibm.com/legal/copytrade.shtml


A B2B hub serves as a single point of control effectively integrating business
processes and information across a business ecosystem. On its own hub, a
company aggregates the demand from its entire network, including strategic
partners, exchanges, and internal relationships. The advantage is access to rich
customized data from the partners, but the disadvantage is that it requires a lot of
investment.

Summary

In this section, we discussed the definition of a legacy system and the different ways
to interact with the system. We concluded with B2B integration scenarios. In the
exam, you might be presented with a scenario and asked to choose the best
integration method. So, you must understand each possibility and determine which
one is the best given the constraints imposed by the problem.

Test yourself

Question 1:

What is an off-board server?

Choices

• A. A screen scraping program

• B. A server that runs in a demilitarized zone

• C. A proxy for a legacy system

• D. A Web proxy server

Correct choice:

C

Explanation:

Choice C is the correct answer.

An off-board server is a server that executes as a proxy for a legacy system. Hence,
choice C is correct.

Section 5. Enterprise JavaBeans

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 30 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Introduction

EJB is a component architecture prescribed by the J2EE technology for the
development of component-based distributed applications. Features such as
transaction management, state management, resource pooling, and security are
automatically available to the business components written using EJB. In an n-tier
architecture model, EJB components reside in the middle tier (typically in an EJB
container hosted by the application server) and contain the business logic for the
applications. EJB components help in rapid and simplified development of
distributed, transactional, secure, and portable applications based on Java
technology. However, EJB is not a silver bullet for all your problems. You should
only use EJB technology if an application requires security and/or transaction
support.

As mentioned earlier, the exam covers only EJB 1.1 and not the latest versions.

EJB component model contract

The EJB component model requires:

• Home interface

• Remote interface

• Bean class

• Primary key class

Home interface

The home interface extends javax.ejb.EJBHome. The home interface allows the
client to create and remove the beans. For entity beans, this interface also allows
you to find an existing bean.

Remote interface

The remote interface extends javax.ejb.EJBObject and defines the bean's
business methods the client can call.

Bean class

The bean class extends javax.ejb.EntityBean for entity beans and
javax.ejb.SessionBean for session beans. This class implements the bean's
business methods. It is important to note that the bean class does not implement
either the home interface or the remote interface of the bean.

Primary key class

The primary key class is present only for an entity bean; however, it is optional. This

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 102

http://www.ibm.com/legal/copytrade.shtml


class implements java.io.Serializable and contains one or more public fields
whose names and types match a subset of container-managed fields in the bean
class. This class can remain undefined until deployment.

EJB types

There are two types of enterprise beans.

• Session beans:

• Stateful

• Stateless

• Entity beans:

• Container-managed persistence

• Bean-managed persistence

(Note: In EJB 2.0, there is one more type of EJB called message-driven beans for
asynchronous messaging.)

Session beans

Session beans represent business logic, rules, and workflow. They can exist as
stateful or stateless session beans. At deployment time, the type of session bean is
revealed to the container with the help of an identifier in the deployment descriptor.

• Stateful session beans
Stateful session beans can maintain the conversational state of a client
across methods and transactions and are therefore dedicated to the same
client for their lifetime. A conversational state simply involves maintaining
the reference to the client's prior states. An online shopping cart is the
best example of maintaining a conversational state where the contents of
the client cart should be kept until the client's session is active. The use of
stateful session beans is the correct choice for modeling this component.

• Stateless session beans
On the other hand, stateless session beans cannot maintain
conversational state. This does not mean that stateless session beans
cannot hold any state information, but that such stored information cannot
be client specific. These are lightweight objects, and a minimal number of
instances can be swapped and reused for many clients. Thus, the
performance is better compared to stateful session beans.

Stateless or stateful?

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 32 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Choosing between stateful and stateless beans depends on whether you need to
maintain the conversational state of the client. Stateful session beans are
instantiated on a per-client basis and can multiply and consume resources rapidly.
So, if you don't need to maintain state, then it's always better to use stateless beans
for performance reasons. Also, remember that if the conversational state must
persist even after the client is gone, then entity beans are a better choice for storing
this data. And because stateless session beans are never passivated like stateful
session beans, they offer better performance than stateful session beans.

Entity beans

Entity beans represent the data stored in a data store, such as a database, file
system, nontrivial storages like LDAP, or any form of persistent storage. For the
sake of simplicity in this tutorial, whenever we refer to a database, it means any kind
of persistent data store.

Multiple clients can access the same bean, and the container manages the
concurrency. These beans are persistent across client sessions.

An entity bean can be classified into two types depending on whether the container
or the bean developer handles the persistence logic.

• Container-managed persistence (CMP)

The EJB container handles all the database access required by the entity
bean. The bean class does not contain any database-related code, and it
is not tied to any particular database. The bean can be deployed to any
J2EE server, with any database.

CMP benefits include:

• Portability across database schema and vendors.

• Absolutely no code (like SQL) for data access; hence, the bean looks
cleaner.

• Faster development time because the persistent logic is handled
behind the scene.

• The persistent code generated by the container is generally
optimized, and the bean is consequently better quality.

The costs of CMP use involve:

• The generated queries cannot use the native features provided by the
database vendor. For example, using a particular index or hint with an
Oracle database is not possible.

• Bean-managed persistence (BMP)

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 102

http://www.ibm.com/legal/copytrade.shtml


Vendors might not provide mapping tools for some nontrivial data stores
like LDAP or XML databases. BMP is the only solution in this case. Here,
the bean developer writes the logic for loading and storing the data to a
backing store. In the case of relational databases, this is typically done
using JDBC, potentially through the use of data access objects.

Transaction management

A transaction is a unit of work that either fully completes (a commit), or is not
completed at all (a rollback). A transaction adheres to the following "ACID"
principles.

Atomicity

This property ensures that the transaction is performed as a single unit of work
where everything is totally complete or everything remains untouched. Imagine if you
make a purchase through an online store and you are charged for the items by the
payment bean, but the order bean doesn't ship you the goods because of a failure.
The atomicity property avoids such a scenario by ensuring that both the payment
and shipping happens or the payment reverses if shipping fails.

Consistency

A consistent transaction should leave the data store in a consistent state. In the
previous example, if you are charged for the items by the payment bean, and your
order ships but the order bean doesn't update the record, then the database is in an
inconsistent state. The consistency property ensures that this does not happen.

Isolation

This property ensures you do not see the other running transactions in the database,
thereby preventing one transaction from corrupting the other.

Durability

Durable transactions should survive a system failure. If the system fails in the middle
of the transaction, then the system should back out the transaction for consistency
and atomicity.

Transaction management, continued

EJB transactions can be implemented in two ways:

• Container-managed transactions (CMT)

• Bean-managed transactions (BMT)

Container-managed transactions

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 34 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


CMT is a declarative transaction demarcation, where the transaction-related details
are written into the bean's deployment descriptors. The container takes care of the
actual transactions. Nested or multiple transactions are not allowed in the enterprise
beans. Typically, the container begins a transaction immediately before an
enterprise bean method starts. It commits the transaction just before the method
exits. Each method can be associated with a single transaction.

Container-managed transactions do not require all the methods to be associated
with transactions. When deploying a bean, you specify which of the bean's methods
are associated with transactions by setting the transaction attributes.

To specify transaction requirements for a method, you must specify a transaction
attribute. These attributes control the scope of a transaction. There are six possible
values for the transaction attributes:

• Required

• RequiresNew

• NotSupported

• Supports

• Mandatory

• Never

Required

This bean method must be part of a transaction. If called outside a transaction, a
new transaction is automatically started. Otherwise, the method uses the existing
transaction.

RequiresNew

When this bean method is called, a new transaction is always started, and the
existing transaction is suspended.

NotSupported

The transactional context of the calling client is not propagated to the enterprise
bean. Instead, the client transaction is suspended, and the bean method runs within
an unspecified transaction context.

Supports

This method can be called independently or as part of a transaction. If the client is
associated with a transaction context, the bean runs within the same transaction
context. Otherwise, the bean method runs within an unspecified transaction context.

Mandatory

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 35 of 102

http://www.ibm.com/legal/copytrade.shtml


This bean method can be called only as part of a transaction. If the client invokes the
method without a meaningful transaction context, the container throws
TransactionRequiredException. Otherwise, the method runs within the client's
transaction context.

Never

This bean method cannot be called as part of a transaction. If the client invokes the
method with a meaningful transaction context, the container throws a
java.rmi.RemoteException. Otherwise, the bean method runs within an
unspecified transaction context.

Bean-managed transactions (BMT)

BMT is a programmatic transaction demarcation, and the programmer should write
the code in the enterprise bean and handle the transactions. BMT can use either
JDBC transaction or JTA transaction. The transaction manager of the DBMS
provides JDBC transaction. There is a possibility that this transaction manager might
not work with the heterogeneous databases. The J2EE transaction manager
provides JTA transactions, and the transaction can span and update multiple
databases of different vendors.

A session bean can use either BMT or CMT, whereas an entity bean can use only
CMT.

Using data access objects

You use DAO to decouple the business logic and the data access logic. In entity
beans, if you use BMP, then the code should contain the business logic as well as
data access logic. Instead of having both the concerns in the same place, you can
move the data access logic to a DAO class. In that case, data access logic is hidden
from the entity bean. It is a modular and reusable way of coding, and you can easily
swap and move the DAO to another database. Later, if you must convert the BMP
bean to a CMP bean, this task becomes easier because of the segregation of the
concern.

The DAO also has some cons. It creates one more layer, and the programmer is
responsible for properly creating and garbage collecting DAO. Also, the programmer
must write good SQL queries.

Security

It is important to know that EJB focuses on authorization rather than on
authentication. So, you normally specify who can access which methods and not
how the users authenticate themselves to the system. Authentication mechanisms
are generally defined by the container vendor.

The EJB architecture encourages the programmer to implement the enterprise bean

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 36 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


class without hard-coding the security policies and mechanisms into the business
methods. In most cases, the enterprise bean's business method does not contain
any security-related logic. The deployer configures the security policies for the
application depending on the needs of the target environment.

EJB offers two kinds of security:

• Declarative

• Programmatic

Declarative

The security rules are defined declaratively in the bean's deployment descriptor.
Roles are defined and then the method permissions are defined in the descriptor.
Method permissions indicate which roles are allowed to invoke which methods.
During the deployment, the deployer maps these abstract roles to actual users in the
target system.

Programmatic

In some cases, the declarative security is not enough. For example, a bean might
want to restrict access based on the incoming user's role and the business method
parameters. You use the getCallerPrincipal() and isCallerInRole()
methods to programmatically authorize the access. The getCallerPrincipal()
method returns the enterprise bean's caller, and you use the isCallerInRole()
method to get the caller's role.

Summary

In this section, we examined the EJB programming model and the required
classes/interfaces to build a bean. We then discussed the different types of beans
along with their uses. We also reviewed whether to choose stateless or stateful bean
for a given task and looked into the persistence and transaction possibilities
provided by the EJB model. Lastly, we considered the use of DAO to write better
data access code and explored the EJB security model.

Test yourself

Question 1:

A nontransactional client accesses an EJB and a
TransactionRequiredException is thrown. What is the transaction attribute of
this EJB?

Choices:

• A. Required

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 37 of 102

http://www.ibm.com/legal/copytrade.shtml


• B. Mandatory

• C. RequiredAlways

• D. RequiredNew

Correct choice:

B

Explanation:

Choice B is the correct answer.

An EJB method marked with a Mandatory transaction attribute can be called only as
part of a transaction. If the client invokes the method without a transaction context,
the TransactionRequiredException is thrown. Hence, choice B is correct.

Choices A and D are incorrect because these attributes do not throw an exception
under the given scenario.

Choice C is incorrect as there is no such transaction attribute as RequiredAlways.

Question 2:

Which of the following statements are true?

Choices:

• A. Stateful session beans can maintain client-specific state.

• B. Stateless session beans can maintain state, but it will not be specific to
a client.

• C. Stateful session beans extend javax.ejb.StatefulSessionBean
whereas stateless session beans extend javax.ejb.SessionBean.

• D. A stateful session bean cannot use bean-managed transaction.

Correct choice:

A and B

Explanation:

Choices A and B are the correct answers.

A stateful session bean is dedicated to a client during its lifetime. Therefore, you can
use a stateful session bean to store client-specific state, so choice A is correct.

A stateless session bean can have an instance variable that stores state information.
But because the bean instance is not dedicated to a client and is swapped across
multiple clients in its lifetime, the stored information cannot be specific to a particular

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 38 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


client. For example, you cannot store a user's shopping cart in the instance variable
and expect to fetch it later. Rather you can use it to store generic data like
information about the database, JNDI names, and so on. Thus, choice B is correct.

A session bean, regardless of its type, always extends javax.ejb.SessionBean.
Hence, choice C is incorrect.

Session beans can use both container-managed and bean-managed transactions.
So, choice D is incorrect.

Section 6. Enterprise JavaBeans container model

Introduction

The EJB container provides the runtime support for the deployed EJB instances.
From the perspective of the enterprise beans, the container is a part of the target
operational environment. The container runtime provides the deployed enterprise
beans with transaction and security management, network distribution of clients,
scalable management of resources, and other services generally required as part of
a manageable server platform. The container provides a simple, standard API
between the enterprise bean and the container. This API is called the EJB
component contract. In this section, let's see why a container pools the bean
instances and passivates the bean. We also discuss the container's lifecycle
management capabilities and how system monitoring helps in a healthy system.

Bean instance pooling

EJB components are heavyweight objects with many classes (programmer defined
and system generated) operating under the hood. Creating and removing them
frequently is consequently an expensive operation. To avoid this, an EJB container
uses a pool of instances shared between users. Pooling is done only for stateless
beans and entity beans; stateful beans need to maintain state and thus cannot be
swapped between users.

The benefits of pooling are:

• Timely handling of more requests because time is not wasted in
creating/deleting objects.

• Complete transparency to the client.

• Declarative mechanism that does not require any change in the bean
code and can be fine-tuned based on the resources in hand and the
number of requests.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 39 of 102

http://www.ibm.com/legal/copytrade.shtml


Bean passivation

To efficiently manage the resources, an EJB container transfers the state of an idle
bean instance to some form of secondary storage. The transfer from the working set
to secondary storage is called instance passivation. The transfer back is called
activation. This is done only for stateful session beans and entity beans. For a
stateless session bean, passivation is not needed, as there is no state to preserve.
The container can simply create another stateless session bean instance, if one is
needed, to handle an increase in client workload.

The benefits of passivation include:

• Handling more requests with fewer resources by passivating idle
instances.

• Complete transparency to the client although a delay might be
experienced while activating the instance.

• Declarative mechanism that does not require any change in the bean
code and can be fine-tuned based on the resources in hand and the
number of requests.

It is important to know that a stateful session bean cannot be passivated if it is in a
transaction.

Lifecycle management

The lifecycle of an Enterprise JavaBean is managed by the container that ensures
optimal utilization of resources by mechanisms, such as instance pooling and
passivation. Because of this, lifecycle management is essential for the scalability of
an application. If you have chosen a proper Enterprise JavaBean for your task and
configured the correct parameters for pooling and passivation behaviors, you can
rest assured that the application will scale well.

The lifecycle varies depending on the type of Enterprise JavaBean. Let's examine
the beans types one by one.

Stateful session beans

The following diagram illustrates the lifecycle of a stateful session bean. The client
initiates the lifecycle by invoking the create() method. The EJB container
instantiates the bean and then invokes the setSessionContext() and
ejbCreate() methods in the session bean. The bean is now ready to serve the
clients.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 40 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


In the ready stage, the EJB container might decide to passivate the bean by moving
it from memory to secondary storage to preserve some precious memory. Just
before passivating, the EJB container calls the ejbPassivate() callback method
to notify the bean. The bean can perform any cleanup action such as closing any
open JDBC actions. If a client call comes when the bean is in passive stage, the EJB
container activates the bean and moves to the ready stage. Just before the bean is
available to the client, the ejbActivate() method is called so that the bean can
initialize any resources closed during passivation.

At the end of the lifecycle, the client invokes the remove() method, and the EJB
container calls the bean's ejbRemove() method. The bean's instance is now ready
for garbage collection.

Stateless session beans

Because there is no state maintenance, stateless session beans contain a simple
lifecycle with only two possible states during their lifetime. The following diagram
illustrates the events that happen in the lifecycle of a stateless session bean.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 41 of 102

http://www.ibm.com/legal/copytrade.shtml


Lifecycle management, continued

Entity beans

The following diagram illustrates the lifecycle of an entity bean. After the EJB
container creates the instance, it calls the entity bean class's
setEntityContext() method. The setEntityContext() method passes the
entity context to the bean.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 42 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Once instantiated, the entity bean moves to a pool of available instances. In the
pooled stage, the instance is not associated with any particular EJB object identity.
All instances in the pool are identical. This is the reason why the container can pool
the resources between clients. The EJB container assigns an identity to an instance
when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. The client invokes the
create() method, causing the EJB container to call the ejbCreate() and
ejbPostCreate() methods. In the second path, the EJB container invokes the
ejbActivate() method. While in the ready stage, an entity bean's business
methods may be invoked.

Similarly, there are two possible paths from the ready stage to the pooled stage.
First, a client may invoke the remove() method, which causes the ejbRemove()
method to be invoked. Second, the EJB container may invoke the
ejbPassivate() method to conserve resources.

At the end of the lifecycle, the EJB container removes the instance from the pool and
invokes the unsetEntityContext() method. It is important to know that the
ejbRemove() method is not invoked when the instance is removed from the pool,
as in session beans, because this would delete the entity data permanently from the
data store.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 43 of 102

http://www.ibm.com/legal/copytrade.shtml


System monitoring

Every EJB container (and J2EE application server) allows an administrator to
perform system monitoring of the quality of service requirements and enables them
to declaratively and dynamically change the system configuration such as the
minimum/maximum number of beans in the pool, concurrency parameters, and
transaction levels without affecting the system. This increased manageability helps
in improving the application performance by ensuring optimal configuration of server
resources for the present load.

Summary

In this section, we discussed the role of the EJB container, instance pooling, and
instance passivation, and their benefits. We also looked at the lifecycles of various
types of beans and explained how they help in increasing the scalability of the
application under load. Finally, you learned how system monitoring helps in ensuring
the proper functioning of the applications and the server.

For the exam, remember that stateless session beans and entity beans can be
pooled whereas stateful session beans and entity beans can be passivated. Also,
understand the benefits of bean pooling and bean passivation. It is equally important
to understand the lifecycle of entity beans, stateless session beans, and stateful
session beans.

Test yourself

Question 1:

For which of the following beans can instance pooling be performed?

Choices:

• A. CMP entity bean

• B. BMP entity bean

• C. Stateless session bean

• D. Stateful session bean

Correct choice:

A, B, and C

Explanation:

Choices A, B, and C are the correct answers.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 44 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Stateful session beans cannot be pooled because the instances need to maintain
state and thus cannot be swapped between users. Hence, choice D is incorrect.

Apart from this, stateless session beans can be pooled because there is no need for
state maintenance. Entity beans can also be pooled because their state information
is always backed up in the persistent store and can be retrieved back. Therefore,
choices A, B, and C are correct.

Section 7. Protocols

Introduction

In this section, we discuss HTTP, HTTPS, IIOP, and JRMP per the exam objectives.
HTTP and HTTPS are targeted for serving Web pages, whereas IIOP and JRMP act
as the transport layer for CORBA and RMI, respectively. We also see how you can
use HTTP/HTTPS to tunnel other protocols when they are blocked.

Hyper Text Transfer Protocol (HTTP)

HTTP is a protocol for moving hypertext files across the Internet. It requires an
HTTP client program, such as a Web browser on one end and an HTTP server
program on the other end. HTTP is the most important protocol used in the World
Wide Web. If you are reading this tutorial on the Internet, you are probably already
using the HTTP protocol.

The HTTP protocol is a request/response protocol. A client sends a request to the
server in the form of a request method, Uniform Resource Identifier (URI), and
protocol version, followed by a MIME-like message containing request modifiers,
client information, and possible body content over a connection with a server. The
server responds with a status line, including the message's protocol version and a
success or error code, followed by a MIME-like message containing server
information, entity meta-information, and possible entity-body content. HTTP
communication usually takes place over TCP/IP connections. The default port is
TCP 80, but you can use other ports as well.

Over the years, the protocol has evolved from versions 0.9 and 1.0 to the present
1.1. The primary difference between HTTP 1.0 and HTTP 1.1 is the way in which
they handle the connections. HTTP 1.0 uses a tear-down approach where a new
connection is used for each request/response exchange. For example, if a page
refers to two inline images, one style sheet, and one JavaScript file, then the client
needs to open five (one for the main page, two for inline images, one for the style
sheet, and one for JavaScript) separate TCP connections to the same server,
thereby increasing the load on the HTTP servers and causing congestion on the

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 45 of 102

http://www.ibm.com/legal/copytrade.shtml


Internet. In HTTP 1.1, a persistent (also referred to as keep-alive) connection is used
for one or more request/response exchanges, although connections might be closed
for a variety of reasons.

An HTTP request can be of GET, POST, HEAD, PUT, OPTIONS, DELETE, TRACE,
or CONNECT types. Of these, only the following three are widely used.

GET

Retrieves whatever information (in the form of an entity) is identified by the request
URI. The method is triggered when the user directly types the URL in the browser's
address bar, when the user clicks a link, or when the FORM specifies the GET
method using the method attribute.

POST

Uses the body of the request to send the data and is useful when posting secure
information, such as login data. This method allows the client to send data of
unlimited length to the Web server a single time. It can also be used to upload both
text and binary data.

HEAD

Used to retrieve the meta-information (HTTP headers) about a resource. Proxy
servers often use it to identify whether a fresh update is available for a locally
cached resource by verifying appropriate HTTP headers.

The pros of HTTP use are:

• Simple to implement and extend

• Ubiquitous standard

• Most of the firewalls do not block HTTP traffic

The cons of HTTP use are:

• Stateless: Each request/response is an isolated, self-contained unit. The
application's previous state is not known to the current request. This is all
right for simple Web pages, but state maintenance is of prime importance
for many dynamic Web applications. However, this issue can be resolved
with:

• Cookies

• URL rewriting

• HTTPS

• Insecure: Because all requests/responses are in clear text, it is easy for a
determined person to sniff the traffic to know the communication details.
Also, there is no verification about the client and the server. These days
when it's easy to spoof a DNS record, you could accidentally hand over

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 46 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


your sensitive information to a hacked server that falsely claims to be a
genuine server.

Hyper Text Transfer Protocol, Secure (HTTPS)

Secure Sockets Layer (SSL) is a protocol developed by Netscape for transmitting
documents securely over the Internet. SSL works by using a private key to encrypt
data transferred over the SSL connection. HTTPS is the HTTP protocol using SSL
for its transport. The default port is 443.

At the start of the connection, an SSL handshake process takes place where the
identities of the client (optional) and server are verified. Following this, based on the
capabilities of both the parties, symmetric session keys are generated. Then the
handshake is completed and the secure session begins. The client and the server
then use these session keys to encrypt and decrypt the data they send to each other
and to validate their integrity.

The pros of HTTPS use are:

• Secure: Only the sender and the receiver can see the data. Any
intermediary gets to see only encrypted data that is meaningless unless
the key to decrypt it is known. Also, both the parties are verified, and
hence there is no chance of confidential data getting into wrong hands.

• State maintenance: State is maintained between subsequent requests.
An application can use this to maintain client-specific details.

• Firewall support: Like HTTP, HTTPS is also allowed through most
firewalls.

The cons of HTTPS use are:

• Slower and expensive: The mathematics used for encryption/decryption
requires more processing power. There is also an increased amount of
data exchanged between the two parties. Both of these factors slow down
the performance. The protocol also requires a digital certificate for the
server which means you must spend money to buy it from a certified
authority and must renew it when it expires.

Internet Inter-ORB Protocol (IIOP)

IIOP, which is a critical part of CORBA, is an object-oriented protocol that allows
distributed programs written in different programming languages to communicate
over the Internet. IIOP enables two or more object request brokers (ORBs) to
cooperate to deliver requests to the proper object. CORBA and IIOP enable
applications to cross boundaries of different computing machines, operating
systems, and programming languages.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 47 of 102

http://www.ibm.com/legal/copytrade.shtml


Starting with CORBA 2.3, pass-by-value is supported, and applications can therefore
transfer objects from the server to the client by copying. Prior to version 2.3, CORBA
only supported remote references, and the lack of object transferring was seen as a
major disadvantage.

Java applications can use IIOP in two ways, either by using Java IDL or RMI over
IIOP. Although using Java IDL is the most direct solution, the RMI/IIOP solution
developed by Sun Microsystems and IBM is better in terms of the simplicity in coding
for accessing CORBA services. RMI/IIOP combines RMI's ease of use with
CORBA's cross-language interoperability. It also provides a convenient way to use
both Java Remote Method Protocol (JRMP) and IIOP on the same network, thus
offering flexibility for customers with mixed environments.

It's worth noting that no default port for IIOP exists, as the ports are dynamically
assigned when an object server binds to a name. Because of this, IIOP supports
tunneling over the HTTP protocol to overcome firewall rules.

The pros of IIOP are:

• Interoperable standard: Allows programs at different locations and
developed by different vendors to communicate.

• Wide range of standard services, such as naming, security, and
transactions.

The cons of IIOP are:

• Performance: Because the calls are remote calls, there is a heavy penalty
on performance.

Java Remote Method Protocol

JRMP is the native wire protocol used for RMI. It is a connection-based and stateful
protocol. Similar to IIOP, it can invoke methods, pass arguments, return values, and
pass objects and exceptions over the network. For passing objects, JRMP uses the
Java object serialization mechanism.

JRMP supports naming service which runs at the default port of 1099. The object
servers are dynamically assigned the port number, as in IIOP.

JRMP clients have built-in support for HTTP tunneling. They use the HTTP POST
method for this purpose.

RMI/IIOP is another wire protocol for RMI. It is interoperable with CORBA services
and therefore the most desired wire transfer protocol for RMI. A J2EE application
server (as well as an EJB server) is required to provide support for the RMI/IIOP
protocol.

The pros of JRMP are:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 48 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Simple and high performance: The protocol is simple without the
complexities in IIOP, so it is much easier to use, which results in better
performance.

The cons of JRMP are:

• Firewall support: Although HTTP tunneling is provided for JRMP clients,
the JRMP servers need to install additional proxy plug-ins, such as
RMIServlet, to handle the tunneled calls.

• Services: The only service available is the naming service. On the other
hand, a CORBA implementation provides many services like security,
transaction, concurrency, and persistence.

• Interoperability: Works only in a Java environment. You can use JNI to
provide interoperability with other languages, but it is not available out of
the box.

Usage scenarios

The following table lists the possible usage scenarios.

Protocol Can be used when

HTTP
• Unstructured data, such as Web

pages or MIME types, such as video
files, need to be transferred.

• Session state need not be
maintained.

• Data security or party verification is
not expected.

HTTPS
• Unstructured data, such as Web

pages or MIME types, such as video
files, need to be transferred.

• Session state needs to be
maintained.

• Data confidentiality and party
verification is required.

IIOP
• CORBA model is used with mixed

environments requiring platform and
language independence.

• Everything is inside the same
network (might need tunneling for
access from/to outside).

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 49 of 102

http://www.ibm.com/legal/copytrade.shtml


JRMP
• RMI model is used.

• Everything is developed in Java
language.

• Everything is inside the same
network (might need tunneling for
access from/to outside).

• A free or low-cost implementation is
required.

• Code portability and garbage
collection are required.

RMI/IIOP
• RMI model is used.

• Simplicity of Java language and
interoperability with CORBA is
required.

• Everything is inside the same
network (might need tunneling for
access from/to outside),

• Both JRMP and IIOP must be used
on the same network.

Firewall and HTTP tunneling

Because HTTP and HTTPS are widely used, firewall administrators generally do not
block HTTP/HTTPS default ports. However, this is not the case for IIOP and JRMP
protocols that use dynamic ports for their object servers. Thus, they get blocked and
must use an HTTP tunneling mechanism to go through the firewall.

HTTP tunneling works by encapsulating the required protocol as HTTP requests and
responses. HTTP tunneling should be the last resort because it does not yield good
performance and requires extra setup and support.

Summary

In this section, you learned about the HTTP protocol and the differences between
the various versions. We then discussed the HTTPS protocol along with its pros and
cons. CORBA's IIOP protocol was also explored followed by the native RMI protocol,
JRMP. We also delved into the advantages of using RMI/IIOP over JRMP. We listed
the usage scenarios of various protocols, and finally, you saw the issues to
remember when dealing with a firewall.

For the exam, you should remember the features of each protocol so you can select
the correct protocol for a given scenario. Also, understand how a firewall could affect
the protocol you plan to use and the possible solutions, such as HTTP tunneling, to

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 50 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


overcome that.

Test yourself

Question 1:

Which of the following protocols help in identifying the parties?

Choices:

• A. HTTP

• B. IIOP

• C. RMI/IIOP

• D. HTTPS

• E. JRMP

Correct choice:

D

Explanation:

Choice D is the correct answer.

SSL helps in encrypting the data and identifies the sender to the receiver and vice
versa. Thus, the HTTPS protocol, which is HTTP over SSL, provides this feature.
So, choice D is correct.

The remaining protocols do not identify the parties and are therefore incorrect.

Question 2:

Which of the following is the standard port for a JRMP object server?

Choices:

• A. 80

• B. 443

• C. 8080

• D. 1099

• E. None of the above

Correct choice:

E

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 51 of 102

http://www.ibm.com/legal/copytrade.shtml


Explanation:

Choice E is the correct answer.

The port number 1099 is used for the JRMP naming service and not for object
servers. Instead, the ports for object servers are dynamically assigned as in IIOP.
Hence, choice E is correct.

The ports 80 and 8080 are typically used for HTTP communication, and the port 443
is used for HTTPS communication. Therefore, the remaining choices are incorrect.

Section 8. Applicability of J2EE technology

Introduction

J2EE is a set of coordinated specifications and practices that together enable
solutions for developing, deploying, and managing multi-tier, server-centric
applications. J2EE extends the strengths of the Java 2 Platform, Standard Edition
(J2SE) to the enterprise level. As you have already seen, EJB is a component
architecture model prescribed by J2EE technology for the development of
component-based distributed applications. In this section, we look at the application
aspects best supported by J2EE and EJB technologies and try to understand the
best technology to use for a given scenario.

When to use J2EE?

The cost and complexity of developing and deploying multi-tier solutions are reduced
by the J2EE application model because the J2EE container provides a complete set
of services to application components and handles many low-level concerns
automatically without complex programming. That functionality results in the
development of rapid solutions for complex enterprise business problems.

If you have the following requirements, then J2EE is the platform of choice:

• Faster solutions delivery to market: J2EE containers separate the
business concerns from the system concerns, such as resource
management and lifecycle management of components. This means that
the programmers can use their time to focus on business solutions rather
than on programming low-level system tasks.

• Freedom of choice: J2EE can run in a heterogeneous environment and
provides complete freedom from vendor lock-in. So, you can deploy an
application on an expensive commercial server running on a proprietary
OS, as well as on an open source server running on a personal desktop

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 52 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


system, depending on your business needs.

• Simplified connectivity to legacy systems: J2EE technology makes it
easier to connect the applications and systems already present in the
business environment and extends them to new delivery channels such
as the Web, cell phones, and smart devices.

• Investment protection:The J2EE platform keeps in pace with the
technical advancements in the industry. For example, when Web services
gained momentum, J2EE adopted it in the immediate revision. This
ensures that J2EE technology is future-proof and your IT investment is
protected from becoming obsolete.

When to use EJB

As you've already seen, an Enterprise JavaBean is a server-side component that
models an application's business logic. An EJB-based solution is not the preferred
solution for every kind of problem. Because it is a heavyweight model, it often has a
trade-off in terms of performance and complexity. Therefore, using it in a place
where it is not required can lead to problems. If your application has the following
requirements, then EJB components provide a better choice for implementing your
solution.

• Scalability: EJB technology is a distributed component technology. As
the user base increases, the application components can be distributed
across multiple machines. Even though the EJB components run on
different machines, the client is completely transparent of the location.

• Transactionality: EJB technology supports transactions in both
programmatic and declarative ways. Most of the complex processes in
transaction handling are automatically managed by the EJB container.

• Support for a variety of clients: EJB technology supports various types
of clients, such as remote clients, thin clients, and applets.

• Increased productivity: Although EJB implementation has a steep
learning curve, it pays off eventually because programmers are freed from
complex, low-level tasks, such as transactions, persistence, security, and
pooling. They can focus on developing the business logic and leave the
rest to the application server vendors.

• Fine-grained security: EJB has built-in support for both declarative and
programmatic role-based security.

• Increased code reuse: EJB takes code reuse to a new level. You can
write and declaratively customize generic components across various
projects simply by configuring the deployment descriptors at deploy time.

• Need to avoid vendor lock-in: EJB components extend Sun's
write-once-run-anywhere and write-once-deploy-anywhere principles. You

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 53 of 102

http://www.ibm.com/legal/copytrade.shtml


can write components that are portable not just across JVMs but also
across application server vendors.

J2EE technologies and their applications

The exam requires you to pick the right J2EE technology for a given problem. The
following table lists the various J2EE standard services and the corresponding
application aspects they solve.

J2EE services Application aspect

EJB
• Distributed component programming

model

• Support for persistence,
transactions, and security

JSP
• Handling and processing of HTTP

requests and responses

• For generating dynamic content in
text-based markup languages, such
as HTML, XML ,WML, and SVG

Servlets
• Handling and processing of HTTP

requests and responses

• For handling nontextual data and
dispatching requests

JMS
• For communicating with

message-oriented middleware
(MOM) products in a generic way

• For loosely coupled communication

• For asynchronous and reliable
communication across enterprise
components and legacy systems

JDBC
• For accessing data stores in a

generic way

JNDI
• For accessing directory and naming

services in a generic way

JAXP
• For parsing and transforming XML

documents in a generic way

RMI-IIOP
• Simplicity of Java language and

interoperability with CORBA is

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 54 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


required

Java IDL
• For invoking external CORBA

objects using IIOP

JTA/JTS
• Demarcating transactions in a

generic manner independent of the
transaction manager implementation

JavaMail
• Platform-independent and

protocol-independent framework to
build mail and messaging
applications

JCA
• For developing pluggable resource

adapters that support access to EIS

Summary

In this section, we discussed how the J2EE platform is suitable when you require
faster time-to-market and need to avoid vendor lock-in. You learned that you can
choose the EJB component model when you require a robust, scalable, and
transactional component model. We also listed various application aspects and the
J2EE technologies best suited for solving them. In the exam, you will be given a
scenario and asked to choose the appropriate technology for implementing it. Read
all the requirements carefully and determine the best possible solution.

Test yourself

Question 1:

Your company has an existing intranet portal developed using CGI and Perl
technology. The portal has dynamic pages that fetch data from a relational database
for display purposes. Which J2EE technology is best suited for replacing this legacy
application?

Choices:

• A. JSP/servlets

• B. EJB with JSP/servlets

• C. JDBC with JSP/servlets

• D. JNDI with JSP/servlets

Correct choice:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 55 of 102

http://www.ibm.com/legal/copytrade.shtml


C

Explanation:

Choice C is the correct answer.

At a cursory glance, choice A might seem like the correct choice. But the portal has
to access data from the database for which either EJB or JDBC can be chosen. As
per the requirement, the data is read only for display purposes, which means that
there isn't any need for transactional support. Hence, choice C is correct while
choices A and B are incorrect.

JNDI is used for generic access to directory and naming services. Because there is
no such requirement here, choice D is incorrect.

Section 9. Design patterns

Introduction

The concept of design patterns was first introduced by Christopher Alexander when
he discovered that you can repeatedly apply certain solutions to solve the same or
similar problems. Although his ideas were based on building designs, the concept
applies equally well to the software field. Understanding this, the Gang of Four (Erich
Gamma, Richard Helm, John Vlissides, and Ralph Johnson) published their famous
book Design Patterns: Elements of Reusable Object-Oriented Software, which
earmarked a new era in the software industry. The SCEA exam tests your
knowledge of the 23 patterns documented under three different categories by the
Gang of Four.

In this tutorial, for each pattern, you will find a catalog containing the following
elements.

• Intent: the objective of this pattern

• Description: a brief description of the pattern

• UML diagram: the structure of the pattern documented in UML

• Benefits: the pros of using this pattern

• When to use: the possible scenarios in which you can use the pattern

Benefits of design patterns

Design pattern benefits include:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 56 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Proven solutions: Patterns capture the experience and knowledge of
developers who have successfully used these patterns in their own work.

• Promotes reusability: Patterns provide a ready-made solution you can
adapt to different problems, per requirements.

• Expressive: Patterns provide a common vocabulary of solutions that can
express large solutions in a precise way.

GOF patterns: Creational

Creational patterns specialize in abstracting the instantiation process. They help in
isolating how objects are created, composed, and represented from the rest of the
system. There are five patterns defined in this category:

• Abstract Factory

• Builder

• Factory Method

• Prototype

• Singleton

Abstract Factory

Intent:
Provides an interface for creating families of related or dependent objects without
specifying their concrete classes.

Description:
The Abstract Factory pattern defines an abstract class that determines the
appropriate concrete class to instantiate to create a set of concrete classes that
implement a standard interface. The client interacts only with the interfaces and the
Abstract Factory class. The client is completely shielded from the concrete classes.
The Abstract Factory pattern is similar to the Factory Method pattern, except that it
creates families of related objects and can be considered as a factory of factories.

UML diagram:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 57 of 102

http://www.ibm.com/legal/copytrade.shtml


Benefits:

• Isolates concrete classes.

• Makes exchanging product families easy.

• Promotes consistency among products.

When to use?
You can use the Abstract Factory pattern when:

• The system should be independent of how its products are created,
composed, and represented.

• The system should be configured with one of the multiple families of
products.

• A family of related product objects is designed to be used together and
you need to enforce this constraint.

• You want to provide a class library of products and you want to reveal just
their interfaces, not their implementations.

GOF patterns: Creational, continued

Builder

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 58 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Intent:
Separates the construction of a complex object from its representation so that the
same construction process can create different representations.

Description:
The Builder pattern separates the construction of a complex object from its
representation so the same construction process can create different objects. The
Builder pattern allows a client object to construct a complex object by specifying only
its type and content. Based on the type, the appropriate concrete builder takes the
responsibility of creating and assembling the complex object. The client is isolated
from the details of the object's construction.

UML diagram:

Benefits:

• Lets you vary a product's internal representation.

• Isolates code for construction and representation.

• Gives finer control over the construction process.

When to use?
You can use the Builder pattern when:

• The algorithm for creating a complex object should be independent of the
parts that make up the object and how they are assembled.

• The construction process must allow different representations for the
constructed object.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 59 of 102

http://www.ibm.com/legal/copytrade.shtml


Factory Method

Intent:
Defines an interface for creating an object but lets subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Description:
The Factory method lets a class defer instantiation to subclasses, which is useful for
constructing individual objects for a specific purpose without the requestor knowing
the specific class being instantiated. This helps in introducing new classes without
modifying the existing code because the new class implements only the interface, so
the client can use it. You create a new factory class to create the new class, and the
factory class implements the factory interface.

UML diagram:

Benefits:

• Eliminates the need to bind application-specific classes into your code.

• Gives subclasses a hook for providing an extended version of an object.

• Connects parallel class hierarchies and localizes the knowledge about
dependency between the classes.

When to use?
You can use the Factory Method pattern when:

• A class cannot anticipate the class of objects it must create.

• A class wants its subclasses to specify the objects it creates.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 60 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Classes delegate responsibility to one of several helper subclasses, and
you want to localize the knowledge of which helper subclass is the
delegate.

GOF patterns: Creational, continued

Prototype

Intent:
Specifies the kinds of objects to create using a prototypical instance and creates
new objects by copying this prototype.

Description:
The Prototype pattern allows an object to create customized objects without knowing
their exact class or the details of how to create them. The Prototype pattern gives
prototypical objects to an object and then initiates the creation of objects. The
creation-initiating object then creates objects by asking the prototypical objects to
make copies of them.

UML diagram:

Benefits:

• Hides the concrete product classes from the client.

• Adding and removing products at runtime.

• Specifying new objects by varying values.

• Specifying new objects by varying structure.

• Reduced subclassing.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 61 of 102

http://www.ibm.com/legal/copytrade.shtml


• Configuring an application with classes dynamically.

When to use?
You can use the Prototype pattern when:

• A system should be independent of how its products are created,
composed, and represented.

• The classes to instantiate are specified at runtime, for example, by
dynamic loading.

• You have to avoid building a class hierarchy of factories that parallels the
class hierarchy of products.

• Instances of a class can have one of only a few different combinations of
state.

Singleton

Intent:
Ensures that a class has only one instance and provides a global point of access to
it.

Description:
The Singleton pattern ensures that a class has only one instance and provides a
global point of access to that class. Generally, you implement this by hiding the
constructor and providing a method that ensures that all the objects that require an
instance of this class use the same instance.

UML diagram:

Benefits:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 62 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Controlled access to sole instance.

• Reduced namespace.

• Permits refinement of operations and representation.

• Permits a variable number of instances.

• More flexible than class operations.

When to use?
You must use the Singleton pattern when:

• There must be exactly one instance of a class and it must be accessible
to clients from a well-known access point.

GOF patterns: Behavioral

Behavioral patterns are concerned with algorithms and the assignment of
responsibilities to objects. They document the patterns of objects as well as the
patterns of communication between them. There are 11 patterns defined in this
category:

• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

Chain of Responsibility

Intent:
Avoids coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chains the receiving objects and passes the
request along the chain until an object handles it.

Description:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 63 of 102

http://www.ibm.com/legal/copytrade.shtml


This pattern decouples senders and receivers by giving multiple objects a chance to
handle a request. The request gets passed along a chain of objects until one of them
handles it.

UML diagram:

Benefits:

• Reduced coupling.

• Added flexibility in assigning responsibilities to objects.

When to use?
You can use the Chain of Responsibility pattern when:

• More than one object can handle a request, and the handler isn't known.

• You want to issue a request to one of several objects without specifying
the receiver explicitly.

• The set of objects that can handle a request should be specified
dynamically.

GOF patterns: Behavioral, continued

Command

Intent:
Encapsulates a request as an object, thereby letting you parameterize clients with
different requests (queue or log requests) and support undoable operations.

Description:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 64 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Sometimes it's necessary to issue requests to objects without knowing anything
about the operation being requested or the receiver of the request. The Command
pattern encapsulates a request in an object, which allows storing the command,
passing the command to a method, and returning the command like any other
object.

UML diagram:

Benefits:

• Decouples the object that invokes the operation from the one that knows
how to perform it.

• Easy to add new commands because you don't have to change existing
classes.

When to use?
You can use the Command pattern when:

• You want to parameterize objects by an action to perform.

• You specify, queue, and execute requests at different times.

• You must support undo, logging, or transactions.

Interpreter

Intent:
Given a language, defines a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 65 of 102

http://www.ibm.com/legal/copytrade.shtml


Description:
If a particular kind of problem occurs often enough, it might be better to express
instances of the problem as sentences in a simple language. You can then build an
interpreter that solves the problem by interpreting these sentences. The Interpreter
pattern describes how to define the grammar for such simple languages, represent
sentences in the language, and interpret these sentences. It uses a class to
represent each grammar rule.

UML diagram:

Benefits:

• It is easy to change and extend the grammar.

• Implementing the grammar is simple.

• Adds new ways to interpret expressions.

When to use?
You can use the Interpreter pattern when:

• The grammar of the language is simple.

• Efficiency is not a critical concern.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 66 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


GOF patterns: Behavioral, continued

Iterator

Intent:
Provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

Description:
The key idea in this pattern is to take the responsibility for access and traversal out
of the list object and put it into a separate iterator object responsible for tracking the
current element; that is, it knows which elements have been traversed already.

UML diagram:

Benefits:

• Supports variations in the traversal of an aggregate.

• Simplifies the Aggregate interface.

When to use?

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 67 of 102

http://www.ibm.com/legal/copytrade.shtml


You can use the Iterator pattern when you want to:

• Access a collection object's contents without exposing its internal
representation.

• Support multiple traversals of objects in a collection.

• Provide a uniform interface for traversing different structures in a
collection.

Mediator

Intent:
Defines an object that encapsulates how a set of objects interacts. Mediator
promotes loose coupling by keeping objects from referring to each other explicitly
and lets you vary their interaction independently.

Description:
Object-oriented design encourages the distribution of behavior among objects. Such
distribution can result in an object structure with many connections between objects;
in the worst case, every object has knowledge of the other. You can avoid that by
encapsulating collective behavior in a separate mediator object. A mediator is
responsible for controlling and coordinating the interactions of a group of objects.
The mediator serves as an intermediary that keeps objects in the group from
referring to each other explicitly. The objects only know the mediator, thereby
reducing the number of interconnections.

UML diagram:

Benefits:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 68 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Decouples colleagues.

• Simplifies object protocols.

• Abstracts how objects cooperate.

• Centralizes control.

When to use?
You can use the Mediator pattern when:

• A set of objects communicates in well-defined but complex ways.

• Reusing an object is difficult because it refers to and communicates with
many other objects.

• A behavior distributed between several classes should be customizable
without introducing a lot of subclasses.

GOF patterns: Behavioral, continued

Memento

Intent:
Without violating encapsulation, the Memento pattern captures and externalizes an
object's internal state so that the object can be restored to this state later.

Description:
A memento is an object that stores a snapshot of the internal state of another object
-- the memento's originator. The originator initializes the memento with information
that characterizes its current state. Only the originator can store and retrieve
information from the memento; the memento is "opaque" to other objects.

UML diagram:

Benefits:

• Preserves encapsulation boundaries.

• Simplifies the originator.

When to use?
You can use the Memento pattern when:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 69 of 102

http://www.ibm.com/legal/copytrade.shtml


• A snapshot of an object's state must be saved so it can be restored to that
state later.

• A direct interface to obtain the state would expose implementation details
and break the object's encapsulation.

Observer

Intent:
Defines a one-to-many dependency between objects so that when one object
changes state, all its dependents are automatically notified and updated.

Description:
The Observer pattern provides a way for a component to flexibly broadcast
messages to interested receivers. The key objects in this pattern are subject and
observer. A subject may have any number of dependent observers. All observers
are notified whenever the subject undergoes a change in state. In response, each
observer queries the subject to synchronize its state with the subject's state.

UML diagram:

Benefits:

• Abstract coupling between subject and observer.

• Support for broadcast communication.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 70 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


When to use?
You can use the Observer pattern when:

• An abstraction has two aspects, one dependent on the other.
Encapsulating these aspects in separate objects lets you vary and reuse
them independently.

• A change to one object requires changing others, and you don't know how
many objects need to be changed.

• An object should be able to notify other objects without making
assumptions about who these objects are.

GOF patterns: Behavioral, continued

State

Intent:
Allows an object to alter its behavior when its internal state changes. The object will
appear to change its class.

Description:
The key idea in this pattern is to introduce an abstract class to represent the
possible states of the object. This class declares an interface common to all the
classes that represent different operational states. The concrete subclasses
implement state-specific behavior. Based on the current state, the appropriate
concrete class is selected and used.

UML diagram:

Benefits:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 71 of 102

http://www.ibm.com/legal/copytrade.shtml


• Localizes state-specific behavior and partitions behavior for different
states.

• Makes state transitions explicit.

When to use?
You can use the State pattern when:

• An object's behavior depends on its state and it must change its behavior
at runtime depending on that state.

• Operations have large, multipart conditional statements that depend on
the object's state.

Strategy

Intent:
Defines a family of algorithms, encapsulates each one, and makes them
interchangeable. Strategy lets the algorithm vary independently from clients that use
it.

Description:
The Strategy pattern defines a group of classes that represent a set of possible
behaviors. The functionality differs depending on the strategy (algorithm) chosen.

UML diagram:

Benefits:

• An alternative to subclassing.

• Strategies eliminate conditional statements.

• A choice of implementations.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 72 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


When to use?
You can use the Strategy pattern when:

• Many related classes differ only in their behavior.

• You need different variants of an algorithm.

• An algorithm uses data that clients shouldn't know about.

• A class defines many behaviors, and these behaviors appear as multiple
conditional statements in its operations. Instead of having many
conditionals, move related conditional branches into their own Strategy
class.

GOF patterns: Behavioral, continued

Template Method

Intent:
Defines the skeleton of an algorithm in an operation, deferring some steps to
subclasses. The Template Method pattern lets subclasses redefine certain steps of
an algorithm without changing the algorithm's structure.

Description:
A template method defines an algorithm in terms of abstract operations that
subclasses override to provide concrete behavior.

UML diagram:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 73 of 102

http://www.ibm.com/legal/copytrade.shtml


Benefit:

• Template methods provide a fundamental technique for code reuse.

When to use?
You can use the Template Method pattern:

• To implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behavior that can vary.

• When common behavior among subclasses should be factored and
localized in a common class to avoid code duplication.

• To control subclasses extensions.

Visitor

Intent:
Represents an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements
on which it operates.

Description:
The Visitor pattern provides a maintainable, easy way to represent an operation to
be performed on the elements of an object structure. New operations can be defined
without changing the classes of the elements on which it operates.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 74 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


UML diagram:

Benefits:

• Makes adding new operations easy.

• Gathers related operations and separates unrelated ones.

When to use?
You can use the Visitor pattern when:

• An object structure contains many classes of objects with differing
interfaces, and you want to perform operations on these objects that
depend on their concrete classes.

• Many distinct and unrelated operations need to be performed on objects
in an object structure, and you want to avoid "polluting" their classes with
these operations.

• The classes defining the object structure rarely change, but you often
want to define new operations over the structure.

GOF patterns: Structural

Structural patterns are concerned with how classes and objects are composed to

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 75 of 102

http://www.ibm.com/legal/copytrade.shtml


form larger structures. Seven patterns are defined in this category:

• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

Adapter

Intent:
Converts the interface of a class into another interface that clients expect. Adapter
lets classes work together that couldn't, otherwise, because of incompatible
interfaces.

Description:
The Adapter pattern defines an intermediary between two classes, converting the
interface of one class so it can be used with the other. This enables classes with
incompatible interfaces to work together. The Adapter class implements an interface
used by the clients and provides access to an instance of a class not known to its
clients.

UML diagram:

Benefits:

• Allows two or more incompatible objects to communicate and interact.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 76 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Improves reusability of older functionality.

When to use?
You can use the Adapter pattern when:

• You want to use an existing class and its interface does not match the
one you need.

• You want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have
compatible interfaces.

• You want to use an object in an environment that expects an interface
different from the object's interface.

GOF patterns: Structural, continued

Bridge

Intent:
Decouples an abstraction from its implementation so the two can vary
independently.

Description:
When an abstraction can have one of the several possible implementations, the
usual way to accommodate them is to use inheritance that binds an implementation
to the abstraction permanently, making it difficult to modify, extend, and reuse
abstractions and implementations independently. Instead of combining the
abstractions and implementations into many distinct classes, the Bridge pattern
implements the abstractions and implementations as independent classes that can
be dynamically combined.

UML diagram:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 77 of 102

http://www.ibm.com/legal/copytrade.shtml


Benefits:

• Decouples interface and implementation.

• Improves extensibility.

• Hides implementation details from clients.

When to use?
You should use the Bridge pattern when:

• You want to avoid a permanent binding between an abstraction and its
implementation.

• Both the abstractions and their implementations should be extensible
using subclasses.

• Changes in the implementation of an abstraction should have no impact
on clients; that is, you should not have to recompile their code.

Composite

Intent:
Composes objects into tree structures to represent part-whole hierarchies. The
Composite pattern lets clients treat individual objects and compositions of objects
uniformly.

Description:
Composite pattern combines objects into tree structures to represent either the
whole hierarchy or a part of the hierarchy. This recursive composition allows clients
to treat individual objects and compositions of objects uniformly.

UML diagram:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 78 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Benefits:

• Defines class hierarchies consisting of primitive objects and composite
objects.

• Makes the client simple.

• Makes it easier to add new kinds of components.

When to use?
You should use the Composite pattern when:

• You want to represent part-whole hierarchies of objects.

• You want clients to be able to ignore the difference between compositions
of objects and individual objects.

GOF patterns: Structural, continued

Decorator

Intent:
Attaches additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality.

Description:
You can use inheritance to add more responsibility to a class. A more flexible
approach is to enclose the component in another object that adds the responsibility.
The enclosing object is called a decorator. The decorator conforms to the interface
of the component it decorates so that its presence is transparent to the component's
clients. The decorator forwards requests to the component and might perform
additional actions before or after forwarding. The decorators can be nested
recursively, thereby allowing an unlimited number of added responsibilities.

UML diagram:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 79 of 102

http://www.ibm.com/legal/copytrade.shtml


Benefits:

• More flexibility than static inheritance.

• Avoids feature-rich classes high up in the hierarchy because you can
define a simple base class and add functionality incrementally as you
require decorator objects.

When to use?
You can use the Decorator pattern when:

• You want to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

• You want to add responsibilities that can be withdrawn later.

• When extension by subclassing is impractical.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 80 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Facade

Intent:
Provides a unified interface to a set of interfaces in a subsystem. Facade defines a
higher level interface that makes the subsystem easier to use.

Description:
The Facade pattern defines a higher level interface that makes the subsystem easier
to use because you only have to deal with one interface. This unified interface
enables an object to access the subsystem using the interface to communicate with
the subsystem.

UML diagram:

Benefits:

• Provides a simple interface to a complex system without reducing the
options provided by the system.

• Shields clients from subsystem components, thereby reducing the
number of objects that clients deal with and making the subsystem easier

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 81 of 102

http://www.ibm.com/legal/copytrade.shtml


to use.

• Promotes weak coupling between the subsystem and its clients.

When to use?
You can use the Facade pattern when:

• You want to provide a simple interface to a complex subsystem.

• There are many dependencies between clients and the implementation
classes of an abstraction.

• You want to layer your subsystems.

GOF patterns: Structural, continued

Flyweight

Intent:
Uses sharing to support a large number of fine-grained objects efficiently.

Description:
The Flyweight pattern uses a shared flyweight object that can be used in multiple
contexts simultaneously. The flyweight has a shareable intrinsic state consisting of
information independent of the flyweight's context and a nonshareable extrinsic state
that depends on, and varies with, the flyweight's context. Client objects are
responsible for passing extrinsic state to the flyweight when it needs it.

UML diagram:

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 82 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Benefits:

• Reduces the number of objects to handle.

• Reduces the memory and storage requirements.

When to use?
You can use the Flyweight pattern when:

• An application uses a large number of objects.

• Storage costs are high because of the high number of objects.

• Most of the object's state can be made extrinsic.

• Many groups of objects may be replaced by relatively few shared objects,
once extrinsic state is removed.

• The application doesn't depend on object identity. Because flyweight
objects may be shared, identity tests will return true for conceptually
distinct objects.

Proxy

Intent:
Provides a surrogate or placeholder for another object to control access to it.

Description:
The Proxy pattern uses a proxy object that acts as a stand-in for a real object. The
proxy acts just like the real object and takes care of controlling the access to the real
object.

UML diagram:

Benefits:

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 83 of 102

http://www.ibm.com/legal/copytrade.shtml


• A remote proxy can hide the fact that an object resides in a different
address space.

• A virtual proxy can perform optimizations, such as creating an object on
demand.

• Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.

When to use?
You can use the Proxy pattern:

• Whenever there is a need for a more versatile or sophisticated reference
to an object than a simple pointer.

Patterns in J2EE

The following table summarizes the common uses of some of the Gang of Four
patterns in the context of J2EE.

Feature Pattern

EJB Home
• Factory

• Abstract Factory

EJB Remote
• Proxy

• Facade

• Decorator

Session beans that model workflow
• Facade

EJB instance pooling
• Flyweight

Value object
• Memento

JDBC Resultset
• Iterator

JDBC, JMS, JCA, or any bridging technology
• Bridge

ServletContext
• Singleton

Servlet filters
• Chain of Responsibility

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 84 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Decorator

JMS
• Observer

• Mediator

Summary

In this section, you were introduced to design patterns and their benefits followed by
the brief treatment of the 23 patterns documented by the Gang of Four. As the intent
of each pattern captures the problem each pattern tries to solve, it is important to
remember and understand the intentions and problems well. The knowledge of the
UML structure, benefits, and applicable scenarios are equally important to score well
in this section.

Test yourself

Question 1:

You are writing a common transaction framework to manage transactions for all the
other subsystems within your organization. The users of this framework should be
isolated from the complexities of the framework. Which design pattern should you
use to achieve this goal?

Choices:

• A. Composite

• B. Facade

• C. Decorator

• D. Adapter

• E. Mediator

Correct choice:

B

Explanation:

Choice B is the correct answer.

You would use the Facade pattern to provide a unified interface to a set of interfaces
in a subsystem. Facade defines a higher level interface that makes the subsystem
easier to use. Because you want to isolate the internal complexities of your
framework, Facade is the best solution for this problem. Hence, choice B is correct.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 85 of 102

http://www.ibm.com/legal/copytrade.shtml


Although Adapter is similar to Facade, it does not help in defining a simplified
interface. Instead, you would use it to simply reuse the existing interface. Therefore,
choice D is incorrect.

None of the other choices helps in hiding the complexity involved in accessing the
system so they are incorrect.

Section 10. Messaging

Introduction

A message is a unit of serializable data exchanged between two or more distributed
components running in the same machine or different machine. By using a
message-oriented middleware (MOM) infrastructure, an application can create,
send, and receive messages. This lets you combine separate business components
into a reliable, yet flexible system. Several vendors provide MOM, and in J2EE, Java
Messaging Service (JMS) offers a generic way to access these systems. In this
section, let's explore the different messaging modes and models and learn how to
choose the correct one for a given scenario.

Communication modes

There are two modes of communication depending on the level of coupling between
the sender and receiver:

• Synchronous

• Asynchronous

Synchronous

A distributed component sends a message to another active component and waits
for the reply (also known as blocking call) to proceed further. The synchronous
communication is tightly coupled because both the sender and receiver have
knowledge about each other. The sender is responsible for retries in case of failures.

The benefits of synchronous communication are:

• This mode is fail-safe and is used for transaction processing.

• Sender can receive the response immediately in realtime.

• When multiple messages are sent, they reach the destination in the same
order in which they are sent.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 86 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• It is a reliable communication mode.

You can use this mode when the sender:

• Wants to have more control over the message.

• Needs real-time response.

• Wants to maintain the order of message processing.

• Wants to retry in case of message failure.

Asynchronous

A distributed component can send messages to any other component via MOM and
continue its processes without waiting for the response. This communication
mechanism is loosely coupled, where sender and receiver need not have knowledge
about each other because a central intermediary, the MOM, exists. Messages can
arrive at the destination in any sequence and not necessarily in same order in which
they are sent. MOM is responsible for retry in case of failure in the communication.

The benefits of asynchronous communication are:

• Sender need not wait till the message gets processed. The responsibility
is delegated to the MOM.

• Messages can be queued. Sender and receiver need not be always
available to receive the messages.

• It is loosely coupled because the sender and receiver do not directly
communicate; they communicate through MOM.

You can use this mode when the sender:

• Wants to broadcast the message.

• Needs no response, or the response is not needed immediately.

• Wants to use the system hardware efficiently.

• Wants to do transaction processing in high volume.

Messaging models

There are two types of messaging models depending on whether you require
one-to-one message delivery or a one-to-many broadcast delivery. The models are:

• Point-to-point messaging

• Publish-subscribe messaging

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 87 of 102

http://www.ibm.com/legal/copytrade.shtml


Point-to-point messaging

In this model, the sender sends the messages to a destination known as queue, and
the receiver consumes the message from the queue. A queue is designated to only
one receiver. More than one sender can send the messages to a queue, but only
one consumer receives that message from the queue. The messages in the queue
are processed on a first-in-first-out (FIFO) basis. The messages stay in the queue
until they are consumed by the consumer or until the messages' expiry time. A
sender can also send the message directly to the consumer instead of placing it in
the queue. A consumer can acknowledge the successful processing of the message.

Publish-subscribe messaging

In this model, publishers publish the messages to a topic. The subscribers who
subscribe to that topic then receive the message. The message stays in the topic
until it is sent to the active subscribers. If some subscribers are not active, the
messages are not delivered to them. There is a special type of subscription known
as a durable subscription in which the messages will not be lost if the subscriber is
not active. Rather, the messages are delivered once the subscriber becomes active.

Usage scenarios

The following table summarizes the technologies you can use for different scenarios.

Technology Scenarios

Messaging
• Need to broadcast messages

• To interface between two
incompatible systems that do not
communicate directly

• To simulate threads

• Asynchronous communication

EJB
• For doing transactional and secure

operations

• Need an immediate response

• To perform business logic

• To maintain persistence data

Messaging and EJB
• To retrieve data and send to another

system, which does not
communicate directly

• To perform distributed transactions
across multiple application and
systems

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 88 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Summary

In this section, we discussed the different types of communication modes and
messaging models used in enterprise systems for messaging. We also discussed
their benefits and when to use these different communication modes. In the exam,
given a scenario, you should be able to identify which technologies you can use for
the particular scenario. Remember that if the scenario calls for one-to-one
messaging then it is a candidate for the point-to-point messaging model. On the
other hand, if there are numerous receivers, the best method for implementation is
the publish-subscribe model.

Test yourself

Question 1:

Which of the following choices describe asynchronous messaging?

Choices:

• A. Loose coupling between sender and receiver

• B. Blocks until message is processed

• C. Suitable for transaction processing

• D. The network is not required to be available

Correct choice:

A and D

Explanation:

Choices A and D are the correct answers.

Asynchronous messaging is loosely coupled because the sender and receiver do
not directly communicate; they use MOM for communication. Hence, choice A is
correct.

Because MOM takes care of delivering the messages if the receiver is not available,
the network is not required to be constantly running. Thus, choice D is correct.

Only synchronous messaging blocks the sender until the receiver processes the
message. Therefore, choice B is incorrect.

Because transaction processing requires immediate response, only synchronous
messaging is suitable for implementing it. Hence, choice C is incorrect.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 89 of 102

http://www.ibm.com/legal/copytrade.shtml


Section 11. Internationalization

Introduction

In this age of the Internet, businesses are no longer confined to the boundaries of a
country or culture. Now, it's just as easy to access an application located at the other
end of the globe, as it is to access an application in the same building. Due to these
advancements, there is an increasing need to develop multilingual and multicultural
applications. Developing multiple versions of the same application to cater to
different locales is often cumbersome and might lead to maintenance nightmares.
An easier option is to use internationalization by designing an application in such a
way that it adapts to the preferences of the country where it is used without any
change in the source code. The term internationalization is often abbreviated as i18n
because there are 18 letters between "i" and "n." Making an application adaptable to
a country's local preferences is called localization, and the corresponding
abbreviation is l10n.

Internationalizable elements (need for I18n)

This is a common list of elements that should support internationalization:

• Text output messages

• Unicode

• Security (encryption, decryption) algorithms due to government
restrictions

• Dictionary sorting order

• Formats: number, date, currency, time, measurement, postal code

• GUI items: labels, menu, buttons, online help, colors, page layouts

• Sounds and graphics

• Tax and other legal rules

• Cultural preferences

Almost any feature of the program can be localized. With the addition of localized
data, the same executable code runs in different geographical locations. GUI
components such as labels and menus are not coded in the program and are
retrieved from the outside depending upon the location in which they get executed.
Internationalized programs need not be recompiled to support any language or
location. You can localize the program just by adding the property files that

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 90 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


correspond to the local language.

Java 2 internationalization features

Java programming language has powerful APIs that support
internationalization/localization. The APIs used for this purpose are Properties,
Locale, ResourceBundle, Unicode, java.text package, InputStreamReader, and
OutputStreamWriter.

Properties

The Properties class is used for loading values from property files at startup or
runtime. Only string objects can be stored in a property file as key-value pairs. The
properties can be loaded from or saved to a stream. Generally, a property file
contains data about the application characteristics or its environment. A properties
object, by using the load() method, can read a localized properties file or any
arbitrary input stream to access the appropriate localized values.
Properties props = new Properties();
String myProps = "MyProperties";
props.load(new BufferedInputStream(new FileInputStream(myProps);
String value = System.getProperty("key");

This code snippet shows how the value is retrieved for the key. If the key is not
present, the getProperty() method returns null.

Locale

A java.util.Locale object is used to identify the specific locale for a particular
session or user. A locale object is the identifier of a particular region. You can set the
locale object with any value depending on the user's preferences. It is represented in
one, two, or three elements. The first part contains the language code; the second
part contains the country code; and the third part is the variant. A variant allows
more than one locale for a language and country combination. A locale is
represented as language, and country code separated by an underscore, for
example, en_US, en_GB.

There are different constants, such as Locale. US, for specifying different locale. By
passing these constants as parameters, you can create different locale objects.

ResourceBundle

The java.util.ResourceBundle class is used for holding the locale-specific
object or properties. You can use this class to retrieve the required locale-specific
resources and easily localize programs or translate them into different languages.
You simply add the required classes or properties to support more locales.

By passing the name and the locale to the ResourceBundle.getBundle()
method, you can retrieve the class or property file matching the
name_language-code_country-code. If "Test" is the name and the locale is

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 91 of 102

http://www.ibm.com/legal/copytrade.shtml


"en_US," the ResourceBundle scans for a class or property file named
"Test_en_US." If it is not found, the search continues for the file named "Test_en." If
the search fails, the default Test.class or Test.Properties file loads.

Unicode

Unicode defines a standard and universal character set. The JVM uses the Unicode
character-encoding standard. Characters and strings are represented by 16-bit
character code. Classes such as InputStreamReader and OutputStreamWriter in the
java.io package support reading and writing of character data streams using a
variety of encoding schemes. The default encoding standard is ISO 8859-1 (ISO
Latin_1). If the application uses a character set the default encoding format cannot
handle, the encoding standard should be specified explicitly.

Unicode Transformation Format (UTF) is a multi-byte encoding format that stores
some characters in one byte and others in two or three bytes. If most of the data is
ASCII based, UTF is more compact and is consequently a more widely used
character-encoding scheme than Unicode. UTF-8 is an eight-bit form of UTF, the
unification of US-ASCII and Unicode. UTF-8 is a variable-width character encoding
that encodes 16-bit Unicode characters into one or two bytes. Encoding
internationalized content in UTF-8 is recommended by Sun because it is compatible
with the majority of existing Web content and provides access to the Unicode
character set.

Java.text package

The java.text package has classes and interfaces to handle text, date, number, and
messages. These classes use the default locale object. You can overwrite this
default locale behavior by specifying your preferred locale. You use these classes
for formatting, parsing, searching, and sorting the locale-sensitive information,
according to the locale assigned.

InputStreamReader and OutputStreamWriter

The InputStreamReader class reads data from InputStream as bytes and converts
them to characters, according to a specified character encoding. The
OutputStreamWriter class converts the characters to bytes and sends them to
OutputStream. JVM uses the 16-bit Unicode format, and many of the operating
systems use 8-bit Unicode format. So, any data entering the JVM must be converted
to 16-bit Unicode encoding format, and any data leaving the JVM must be converted
to 8-bit Unicode encoding format. While creating Reader or Writer classes, the
required encoding can be passed as a parameter. The ISO number represents the
encoding. For example, ISO 8859_1 is passed as 8859_1. If nothing is specified,
default encoding of the platform is used.

Summary

In this section, we discussed various culturally dependent data, such as text
messages, colors, currencies, and algorithms. These elements are good candidates

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 92 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


for internationalization. You also learned that the following APIs help in i18n and
l10n.

• Properties: Loads values from property files at startup or runtime.

• Locale: Identifies the specific locale for a particular session or user.

• ResourceBundle: Holds the locale-specific object or properties.

• Unicode encoding standard: Defines a standard and universal
character set.

• java.text package: Handles text, date, number, and messages.

• InputStreamReader: Reads data from InputStream as bytes and
converts them to characters, according to a specified character encoding.

• OutputStreamWriter: Converts the characters to bytes and writes to
OutputStream.

Test yourself

Question 1:

You plan to develop a portal in five different languages to support clients from
different countries. Which of the following application features need to be configured
for internationalizing the application?

Choices:

• A. Text of UI elements

• B. Authentication routine

• C. E-mailing subsystem

• D. Currency

• E. Color of the pages

Correct choice:

A, D, and E

Explanation:

Choices A, D, and E are the correct answers.

Text of UI elements, such as the labels of text fields and buttons must be
internationalized because they have to be presented in different languages Thus,
choice A is correct.

Currency symbol differs from country to country, so choice D is also correct.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 93 of 102

http://www.ibm.com/legal/copytrade.shtml


Interpretation of the colors depends on the cultural preferences of the country. Some
colors might be offensive in a country. Therefore, colors are also a candidate for
customization, and choice E is correct.

Although the UI elements required for capturing the authentication information might
vary, the actual authentication routine works almost the same, irrespective of the
location. Hence, choice B is incorrect.

The bodies of the e-mails may be internationalized, but the basic protocol for mailing
remains the same regardless of the location. Therefore, choice C is incorrect.

Section 12. Security

Introduction

Security has become a prime concern these days due to the financial damages
caused by malicious hack attacks. As an architect, you should be in a position to
minimize these attacks by building a robust security model for your application. In
this section, we briefly introduce to the Java 2 security model and the security
restrictions on applets. Later, we discuss important security concepts, such as
authentication, authorization, symmetric and asymmetric encryption algorithms, and
digital signatures and certificates. We end this section with a discussion on
topologies.

Java 2 security model

In JDK 1.1, any downloaded code, such as applets, was considered untrusted and
consequently run in a restricted sandbox, whereas local applications and signed
applets were given full access to the system resources. The Java 2 security model
changes this coarse-grained approach to a fine-grained, policy-driven approach.
When code is loaded, a policy file is read, and the allowed permissions are granted
to the code. The permissions can be anything from read or write access to a
directory to connect permission to a host computer. Code can access the resource
only if it has been granted the required permissions for accessing that resource.
Permission classes are extensible, so custom permissions and properly configured
policy files provide the required granularity of security.

Applet security

Applets are Java programs that run inside the Web browser. They are typically
embedded in a Web page to add dynamic behavior. Applets are loaded with a
restrictive policy file. The most important restrictions are:

• Making network connections to arbitrary hosts other than the originating

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 94 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


host.

• Reading/writing on the client file system.

• Starting other programs on the client.

• Loading native libraries.

• Defining native methods.

• Any operation that could be detrimental to the client system. (This
excludes attacks such as excessive usage of CPU, memory, and network
resources, as they can be handled at the OS level.)

It is important to know that these restrictions do not apply to applets loaded from the
local file system whose classes are present in the client's CLASSPATH.

Security fundamentals

Following are some of the fundamental terminologies you must be familiar with when
dealing with security issues:

• Principal
Any identifiable person, role, or a system.

• Authentication
The means by which communicating entities prove to one another that
they are acting on behalf of specific identities authorized for access (that
is, the process by which a user or a system is identified by the other
party). For example, a customer logs in to a bank's Web site using his or
her login and password. This combination of user name and password
identifies the user to the system.

• Authorization
The means by which interactions with resources are limited to collections
of users or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints. For example, a manager can see all the
employee details, whereas employees can only see their details.

• Data integrity
The means used to prove that information has not been modified by a
third party while in transit. For example, if you send a file and its
checksum separately, the receiving party can compute the file's
checksum and match it with the received checksum to ensure the file's
contents were not tampered with along the way.

• Confidentiality (data privacy)
The means used to ensure that information is made available only to the
users who are authorized to access it. For example, you can encrypt the
data and send. The receiver who has the decrypting key alone would be
able to read the data.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 95 of 102

http://www.ibm.com/legal/copytrade.shtml


Cryptography

Cryptography is the practice and study of encryption and decryption -- encoding data
so it can only be decoded by intended recipients and rendered unreadable for
others. There are two forms of encryption:

• Symmetric

• Asymmetric

Symmetric

Both sender and recipient know a common key used to encrypt and decrypt
messages. Because the keys are same for both encrypting and decrypting, it is
known as symmetric encryption.

One benefit of this method is:

• Requires significantly less resources in terms of CPU cycles to encrypt
and decrypt the data.

A disadvantage of this method is:

• Both the sender and receiver must share the key in a secure way. If it is
leaked to a third party, the entire mechanism becomes futile.

Asymmetric

Two different but related keys are used in such a way that one key, called a private
key, is kept as a secret, while the other public key is available to anyone. The two
fundamental principles that drive this method are:

• One key cannot be deduced from the other.

• Messages encrypted with one key can only be decrypted by the other and
vice versa.

One advantage of this method is:

• Completely eliminates the need to securely share the keys, as a sender
can use the recipient's public key to encrypt the message, which can be
read only by the recipient using his or her secure private key.

One downside of this method is:

• It is computationally expensive.

In reality, you can use both forms of encryption in combination for enhanced security

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 96 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


and efficient use. You can use symmetric encryption to encrypt the message,
thereby reducing the computational cost involved in decrypting; the shared key
(which would be small compared to the data) is encrypted using the asymmetric
encryption, eliminating the necessity to transfer the keys securely.

Digital signatures and certificates

You can use asymmetric keys to verify the sender. Let's say if a message can be
decrypted using one's public key, it ensures that it was encrypted using the sender's
private key. This fact can be used to verify the sender's authenticity because he or
she is the only one who has access to his or her private keys (provided it has not
been hacked by someone else).

But how do you get an individual's public key, and how do you know that it's really
his or her public key? A certificate that contains the name of the individual, expiration
date, and a copy of the individual's public key solves this dilemma. A central
certificate issuing authority called the Certificate Authority (CA) verifies people's
identity and grants them the certificates. The granted certificates are digitally signed
by the CA to ensure their credibility. The CA certificates are typically installed, by
default, in applications such as Internet browsers. The CA is trustworthy, so the
individuals who are trusted by it are also trustworthy. This chain of trust is what
makes the entire system function properly.

Certificates are issued in various strengths depending on the level of credibility the
CA has on the individual. A certificate of the lowest grade could be obtained by
simply proving you have a valid e-mail ID, whereas a commercial grade might
require advanced identification techniques such as DNA test.

The CA's job does not end with issuing of certificates. It's also in charge of
maintaining the certificate's status. If someone's private key is lost, he or she can
report the theft to the CA that issued the certificate. CA adds the certificate to the CA
Revocation List (CRL) that lists the compromised certificates. Anyone can access
this database to ensure that the certificate they trust is not a malicious one.

Network topologies for implementing security

The layout of the network has a strong correlation with the security of the network.
Multiple entry points to the network without proper access control mechanisms are a
boon for intruders looking to penetrate corporate networks. For enhanced security,
the entry points into the network have to be restricted and must be guarded by
well-configured firewalls. Once the topology is set, there must be constant
monitoring of the firewall, server, and other network equipment log files to uncover
any malicious activities, such as unauthorized intrusions, in a timely manner.

Simple firewall

This is a simple model in which the internal network and the external network are
separated by a firewall.

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 97 of 102

http://www.ibm.com/legal/copytrade.shtml


Two firewalls and DMZ

You use this model when you must offer a significant amount of services to the
external network. You place the externally accessible servers in a demilitarized zone
(DMZ) surrounded by firewalls on either side of the network. You configure the inner
firewall more restrictively than the other firewall. Any communication from the
external network to the internal network happens only through the servers deployed
in the DMZ.

Tunneling

The firewall setup does not generally allow every protocol to communicate through it.
Opening up numerous ports can result in an extremely vulnerable firewall. So,
administrators generally allow only well-defined protocols, such as HTTP and
HTTPS.

You can use tunneling to access an external service that is not allowed by the
firewall by piggy-backing the requests onto a protocol that is allowed by the firewall
(for example, using HTTP as a covert channel for invoking Web services).

Similarly, external networks can tunnel into an internal network. But this is not good
practice as it allows anyone with malicious intentions to bypass the firewall rules.

Summary

In this section, we discussed the security model of the Java language and the
fundamentals of security required to face this exam. Remember the security
restrictions imposed for an applet. Also, try to understand the various basic concepts
of security, such as cryptography, signatures, firewalls, DMZ, and tunneling. The
exam does not require you to know, in detail, the algorithms and mechanisms;
rather, it tests your overall knowledge on the concepts and terminologies.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 98 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Test yourself

Question 1:

Which of the following statements are true about a DMZ?

Choices:

• A. A DMZ is the zone secured behind a firewall.

• B. A DMZ is the zone before a firewall.

• C. A DMZ is the zone in front of two firewalls.

• D. A DMZ is the zone between 2 firewalls.

Correct choice:

D

Explanation:

Choice D is the correct answer.

A DMZ is the zone between two firewalls. Hence, choice D is correct. The remaining
choices are incorrect as they do not describe a DMZ.

Section 13. Wrap-up

Points to remember

We conclude this tutorial with some crucial points to remember. The SCEA exam is
completely different from other exams in terms of its breadth. An architect is required
to know about numerous topics and must decide on the correct solution for a given
problem. So, you must learn many concepts, and there isn't any single book that can
cover all the subjects required for the exam.

Due to the vastness of the topics covered, the exam might appear difficult. But if you
are an experienced architect or willing to spend a significant amount of time
understanding the basics, this will be a fairly easy exam. There is nothing to
memorize and everything is at a conceptual level. So, don't expect to see any
programming questions.

Because this is one part in a series of exams, you won't receive a certificate when
you complete Part 1. You must complete the assignment (Part 2) and the essay

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 99 of 102

http://www.ibm.com/legal/copytrade.shtml


(Part 3) to finish the SCEA track.

We hope this tutorial was helpful in your exam preparation and wish you all the best
for your exam.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 100 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• SCEA certification study guides help you focus on the exam objectives:

• Sun Certified Enterprise Architect for J2EE Technology by Mark Cade and
Simon Roberts (Prentice Hall PTR, 2002)

• Sun Certified Enterprise Architect for J2EE Study Guide (Exam 310-051)
by Paul R. Allen and Joseph J. Bambara (McGraw-Hill Osborne Media,
2003)

• The following books give you a greater understanding of the exam objectives:

• UML Distilled , by Martin Fowler and Kendall Scott (Addison-Wesley,
1999)

• Design Patterns - Elements of Reusable Object-Oriented Software , by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley, 1995)

• Java design patterns 101 by David Gallardo (developerWorks, January
2002)

• Java design patterns 201 by Paul Monday (developerWorks, April 2002)

• Mastering Enterprise JavaBeans by Ed Roman (Wiley, 2001)

• Getting started with EJB technology by Joe Sam Shirah (developerWorks,
April 2003)

• Java Message Service by Richard Monson-Haefel and David Chappell
(O'Reilly, 2000)

• Introducing to the Java Message Service by Willy Farrell (developerWorks,
June 2004)

• Java Internationalization by David Czarnecki Andy Deitsch (O'Reilly, 2001)

• Java internationalization basics by Joe Sam Shirah (developerWorks, April
2002)

• Java Security by Scott Oaks (O'Reilly, 2001)

• Java security Part 1: Crypto basics and Part 2: Authentication and
authorization by Brad Rubin (developerWorks, July 2002)

• Prepare for all the dimensions of Java certification with the other tutorials in this
series:

• Java certification success, Part 3: SCBCD by Seema Manivannan and
Pradeep Chopra (developerWorks, September 2004)

• Java certification success, Part 2: SCWCD by Seema Manivannan

ibm.com/developerWorks developerWorks®

Java certification success, Part 4: SCEA
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 101 of 102

http://www.amazon.com/exec/obidos/tg/detail/-/0130449164/103-2668472-2804642?v=glance
http://www.amazon.com/exec/obidos/ASIN/0072226870/103-2668472-2804642
http://www.amazon.com/exec/obidos/ISBN%3D020165783X/103-2668472-2804642
http://www.amazon.com/exec/obidos/ASIN/0201633612/103-2668472-2804642
http://www.ibm.com/developerworks/edu/j-dw-javapatt-i.html
http://www.ibm.com/developerworks/edu/j-dw-javapatt2-i.html
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.ibm.com/developerworks/edu/j-dw-java-gsejb-i.html
http://www.amazon.com/exec/obidos/ASIN/0596000685/
http://www.ibm.com/developerworks/edu/j-dw-jms-i.html
http://www.amazon.com/exec/obidos/ASIN/0596000197
http://www.ibm.com/developerworks/edu/j-dw-javai18n-i.html
http://www.amazon.com/exec/obidos/ASIN/0596001576
http://www.ibm.com/developerworks/edu/j-dw-javasec1-i.html
http://www.ibm.com/developerworks/edu/j-dw-javasec2-i.html
http://www.ibm.com/developerworks/edu/j-dw-javasec2-i.html
http://www.ibm.com/developerworks/edu/j-dw-java-scbcd-i.html
http://www.ibm.com/developerworks/edu/j-dw-java-scwcd-i.html
http://www.ibm.com/legal/copytrade.shtml


(developerWorks, May 2004)

• Java certification success, Part 1: SCJP by Pradeep Chopra
(developerWorks, November 2003)

• Whizlabs founder Pradeep Chopra offers additional guidance with SCEA
certification in his article "Programming Success: The SCEA Certification."

• Don't miss the SCEA FAQs on JavaRanch.

• Another useful feature on JavaRanch is Architect Certification Forum.

• You'll find articles about every aspect of Java programming, including all the
concepts covered in this tutorial, in the developerWorks Java technology zone.

Discuss

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Sivasundaram Umapathy
Sivasundaram Umapathy holds a bachelor of engineering degree in computer
science from the University of Madras and a master of science degree in software
systems from BITS, Pilani. He is presently associated with Sella Synergy India
Limited, India, the software division of Banca Sella, S.p.A, where he designs and
develops mission-critical banking applications using the BEA WebLogic application
server. He is also crazy about certifications, with SCJP, SCBCD, SCWCD 1.4,
SCMAD, SCEA, OCA, BEA WL7, IBM, and PMP certifications to his credit. He has
authored the Whizlabs SCWCD 1.4 and co-authored the Whizlabs SCMAD exam
simulators. He actively participates in the open source movement in his free time and
is in an expert group member of JSR 244 (J2EE 5.0) and JSR 245 (JSP 2.1).
Acknowledgements: I wish to thank my friend and colleague Mrs. Rajeswari for her
support and suggestions in completing this tutorial.

developerWorks® ibm.com/developerWorks

Java certification success, Part 4: SCEA
Page 102 of 102 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www.whizlabs.com/articles/scea-article.html
http://faq.javaranch.com/view?SunCertifiedEnterpriseArchitectFaq
http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=forum&f=26
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Getting started
	Preparing for SCEA
	What's in this tutorial?

	Concepts
	Introduction
	UML: Building blocks
	UML: Elements
	UML: Relationships
	Common mechanisms
	UML: Diagrams
	UML: Diagrams, continued
	UML: Diagrams, continued
	UML: Diagrams, continued
	Encapsulation, inheritance, and use of interface
	Summary
	Test yourself

	Common architectures
	Introduction
	Architectural characteristics (quality attributes)
	Architectural characteristics (quality attributes), continued
	Architectural tiers
	Summary
	Test yourself

	Legacy connectivity
	Introduction
	Data-level integration
	Application-/business-/presentation-level integration
	B2B integration
	Summary
	Test yourself

	Enterprise JavaBeans
	Introduction
	EJB component model contract
	EJB types
	Session beans
	Stateless or stateful?
	Entity beans
	Transaction management
	Transaction management, continued
	Using data access objects
	Security
	Summary
	Test yourself

	Enterprise JavaBeans container model
	Introduction
	Bean instance pooling
	Bean passivation
	Lifecycle management
	Lifecycle management, continued
	System monitoring
	Summary
	Test yourself

	Protocols
	Introduction
	Hyper Text Transfer Protocol (HTTP)
	Hyper Text Transfer Protocol, Secure (HTTPS)
	Internet Inter-ORB Protocol (IIOP)
	Java Remote Method Protocol
	Usage scenarios
	Firewall and HTTP tunneling
	Summary
	Test yourself

	Applicability of J2EE technology
	Introduction
	When to use J2EE?
	When to use EJB
	J2EE technologies and their applications
	Summary
	Test yourself

	Design patterns
	Introduction
	Benefits of design patterns
	GOF patterns: Creational
	GOF patterns: Creational, continued
	GOF patterns: Creational, continued
	GOF patterns: Behavioral
	GOF patterns: Behavioral, continued
	GOF patterns: Behavioral, continued
	GOF patterns: Behavioral, continued
	GOF patterns: Behavioral, continued
	GOF patterns: Behavioral, continued
	GOF patterns: Structural
	GOF patterns: Structural, continued
	GOF patterns: Structural, continued
	GOF patterns: Structural, continued
	Patterns in J2EE
	Summary
	Test yourself

	Messaging
	Introduction
	Communication modes
	Messaging models
	Usage scenarios
	Summary
	Test yourself

	Internationalization
	Introduction
	Internationalizable elements (need for I18n)
	Java 2 internationalization features
	Summary
	Test yourself

	Security
	Introduction
	Java 2 security model
	Security fundamentals
	Cryptography
	Digital signatures and certificates
	Network topologies for implementing security
	Summary
	Test yourself

	Wrap-up
	Points to remember

	Resources
	About the author

